
Here be wyverns!
Verifying LLVM bitcode with llStar

Jules Villard

University College London

Abstract. We present the llStar tool for the verification of programs
written in bitcode, the intermediate language of the LLVM compiler
infrastructure. The low-level nature of bitcode makes it a challenging
target for automatic formal verification. Thanks to a novel adaptation
of separation logic to bitcode’s memory model, and using the symbolic
execution engine coreStar together with z3 as a backend, llStar is able
to automatically analyse bitcode programs. Simple programs enjoy simple
proofs and specifications, and the compositionality of the analysis allows
it to scale to larger programs. Additional theories can easily be added
to llStar, which we showcase with shape domains for linked lists and
directed acyclic graphs.

1 Introduction

Developing new verification techniques applicable to realistic programs is often
hampered by the intricacies of mainstream programming languages. At the same
time, the way to deal with these intricacies is often the same for verification
techniques that share similar formalisms. It is thus desirable to develop tools
for intermediate languages, and with builtin support for extensions to their
theories. In this paper, we focus on automatic compositional techniques to
analyse programs written in the “bitcode” language, and base the reasoning
about symbolic program states on an easily extensible set of rewrite rules. Bitcode,
the intermediate representation of the LLVM compiler infrastructure [20], is a
RISC-like assembly language with typed values and an infinite number of virtual
registers. Many languages can be compiled to bitcode, such as C, C++, Fortran,
Ada, and Java bytecode. The semantics and memory model of bitcode, close
to that of C, are well-understood (and have been formalised inside the Coq
proof assistant [27]), yet its low-level nature presents challenges for automatic
verification, namely reasoning about low-level, untyped dynamic accesses to
the memory that rely heavily on pointer arithmetic, combined with arrays and
user-defined C-like structures.

This paper presents llStar, a tool for verifying bitcode programs. The theory
of llStar happily deals with the low-level aspects of bitcode’s memory model and
operations. The analysis performed by llStar, the first of its kind for bitcode,
is based on separation logic [24,19], which allows one to reason concisely and
compositionally about heap-manipulating programs and has already given rise to
several tools [12,1,17,6]. New analyses can be developed on top of llStar simply
by adding new logic rules to its flexible proof engine, based on the coreStar

2 Jules Villard

symbolic execution tool [3]. The analysis is compositional, hence has the potential
to scale to large programs, and the tool has been used to automatically verify a
range of examples. Functions are annotated with pre and postconditions, and
llStar attempts to discover loop invariants automatically. We make the following
contributions:

– We give a simple symbolic state model of LLVM’s memory model which,
while precise enough to guarantee memory safety, enables local reasoning
about the heap and a rich connection to an SMT solver to deal with values.

– We present the symbolic execution mechanism of llStar. In particular, we
define separation logic style specifications for bitcode instructions, proof
rules for entailments between symbolic states, and a translation from bitcode
programs to the more abstract language accepted by coreStar.

– We demonstrate the extensible nature of llStar by proving a range of
examples manipulating linked lists and directed acyclic graphs. The logic
rules that deal with such inductive predicates can been added to llStar as
separate, program-independent rules.

– The llStar tool and its source code are released under a BSD license. [26]

Limitations At the moment, llStar ignores certain features of LLVM such as
exceptions, vector instructions, and concurrency. Moreover, it only considers
partial correctness hence cannot guarantee termination. The theory of llStar is
incomplete and in general cannot prove the presence of bugs. The price to pay
for the ability to easily add new theories is one of performance compared to tools
built with native support for these theories. Finally, llStar currently does not
check soundness or termination of user-added proof rules.

Related Work A large number of tools attack the problem of the formal verification
of low-level imperative languages, and in particular of C, such as Frama-C [16],
VCC [10], Havoc [8], and Predator [14]. Closer cousins to llStar are other
tools based on separation logic such as Slayer [1], Space Invader [12], Infer [6],
and HIP/SLEEK [17], which perform compositional and automatic analyses,
usually based on specific shape domains. Some of these domains can be imported
into llStar as additional logic rules, as shown here for the logic of linked lists,
borrowed from Space Invader [12]. Two tools in particular are also based on
coreStar and thus closely related to llStar, although they analyse different
languages: Botinčan et al.’s [2], for C programs, and jStar [13], for Java bytecode.

Other tools build directly on LLVM. KLEE [5] mixes static and dynamic
symbolic execution to find bugs in bitcode programs. LLBMC [25] is a bounded
model-checker for LLVM. KITTeL [15] is a termination prover for bitcode. While
successful in their own rights, the treatment of the heap in each of these tools
is somewhat unsatisfactory, either assuming safe memory accesses or sacrificing
compositionality and scalability by representing it explicitly as an array of cells.

Recent works have aimed at integrating separation logic and SMT solvers.
Botinčan et al. [2] use z3 to discharge pointer arithmetic facts, but do not integrate
support for other theories such as floats and records. Piskac et al. [23] and Navarro
Pérez and Rybalchenko [21], on the other hand, both propose decision procedures

Here be wyverns! Verifying LLVM bitcode with llStar 3

for separation logic entailments involving arbitrary satisfaction theories. Our own
integration with SMT is shallower, and we only consider theories directly relevant
to LLVM values: bitvectors, floats, records, and arrays.

Outline In §2 we introduce the bitcode language and llStar’s architecture. In §3
we detail our symbolic execution of bitcode. We describe our experiments in §4,
in particular how to extend the basic theory of llStar with inductive predicates
for linked lists and directed acyclic graphs. We then conclude.

2 Overview

In this section, we briefly describe bitcode and the architecture of llStar.

2.1 Bitcode modules

Bitcode modules are LLVM’s translation units: each module is compiled separately
and defines its own functions, datatypes, and global variables. Functions are
written in a RISC-like assembly language with an infinite number of registers of
any sizes. A bitcode program is tied to a particular architecture; in particular,
the sizes of datatypes and the layouts of structures in memory are fixed (but
for instance the precise calling convention of functions is not). Finally, the code
is always presented in Single Static Assignment form (SSA): the definition of a
variable must dominate all of its uses.

Values appearing in bitcode instructions are always associated with their
types, described by the following grammar, where N is a natural number:

t ::“ iN integer type
| half | float | double | . . . floating-point types
| t* | t pt1, . . . , tnq | [N x t] | {t1, . . . , tn } derived types

Base types are bitvectors iN of any size N and various kinds of floats. Derived
types are, in order, pointers, functions, arrays (of size N , although the size may
not actually be enforced by LLVM, in particular when it is not statically known),
and structures. LLVM values follow a similar grammar (see §3.1). For instance, a
32 bit integer with value 10 is represented as i32 10, and a structure containing
two 16 bit values 32 and 52 as { i16 32, i16 52 } .

Instructions are grouped into basic blocks inside function definitions and can
be categorised as follows, where x represents a variable name, v a value, l a label
of a basic block, and f a function name:

I ::“ unreachable error
| ret t v | ret void

| br i1 v, label ltrue, label lfalse | br label l | . . .
control flow

| x = bop t v1, v2 binary operation
| x = convop t1 v to t2 conversions
| x = icmp cond, t v1, v2 | x = fcmp cond, t v1, v2 comparisons
| x = alloca t | x = load t* v | store t v, t* vp memory manipulation
| x = getelementptr t* v, t1 v1, ..., tn vn address calculation
| x = phi t [v1, l1], ..., [vn, ln] phi node
| x = call t f(v1, ...,vn) function call

4 Jules Villard

Attempting to execute unreachable in any context results in an error. Returns,
conditional and unconditional branching are standard. A binary operation bop
can be an operation between integers (add, sub, . . .), between floats (fadd, fsub,
. . .) or a bitwise logical operation (and, or, . . .). Conversions can occur between
bitvectors or floats of different sizes, between floats and bitvectors, or between
pointer values and bitvectors (thus allowing pointer arithmetic). Comparisons
between bitvectors or floats return a boolean (a value of type i1, i.e., a single bit)
representing the truth value of the comparison (eq for equality, ugt for unsigned
greater than, . . .). Stack memory is allocated with alloca, and load and store

are the usual memory operations. Functions calls are also standard. Let us now
focus our attention on the address calculation and the phi node instructions.

The getelementptr instruction computes offsets from a base pointer inside
an aggregate type (a structure or array type) according to a sequence of “hops”
starting from that address. Each hop adds an offset to the pointer based on the
type reached at the previous hop. For instance, if the type is that of a structure,
then the hop number corresponds to one of its fields, and the offset is that of
this field; in the case of an array (or, equivalently for LLVM, a pointer), the hop
is an index into the array and the additional offset is the offset of the element at
that index in the array. See Fig. 4 for rules to evaluate these values.

A phi instruction of the form “x = phi t [v1, l1], ..., [vn, ln]” sets x to
the value vi if the control arrives at the current basic block from a previous block
labelled by li (where l1 to ln are the labels of all the predecessors of the current
basic block). Phi nodes are a standard ingredient of programs in SSA form.

We have omitted from this presentation a few datatypes and instructions of
LLVM that are currently not supported by llStar, namely vectors, function and
label pointers, undef values, variable argument functions, exception handling,
concurrency, inline assembly, and many LLVM intrinsics.

Example 1. In the module of Fig. 1, we define the (recursive) type %nd with
two fields: a 32 bits integer and a pointer to a %nd, and a function list_dispose

that assumes a linked list starting at %l and disposes its elements one by one.
Compiling the C program on the right-hand side of Fig. 1 typically results in
this bitcode module (e.g. using clang -O2). If %l is nil then we jump straight to
the exit point, else we enter the loop. The current head of the list is pointed to
by %hd. The tail of the list is pointed to by the second field of %hd, whose address
is computed using getelementptr (on typical 64 bit architectures we would get
%p “ %hd ` 8), and its value loaded into %tl. The current head is then cast
into the type expected by free and disposed of. Finally, the new %tl pointer is
compared to nil and we branch accordingly. If the loop is taken again, %hd gets
assigned to %tl.

2.2 Architecture of llStar

The architecture of llStar, shown in Fig. 2, comprises the following elements:

Bitcode
This is the bitcode module to analyse. llStar uses LLVM to parse

this file and to retrieve the memory layout of the data structures defined in

Here be wyverns! Verifying LLVM bitcode with llStar 5

Figure 1 A bitcode module and some equivalent C code.

%nd = type { i32 , %nd* }

define void @list_dispose(%nd* %l){

go: %c = icmp eq %nd* %l, null

br i1 %c, label %fin , label %loop

loop: %hd = phi %nd* [%tl ,%loop],[%l,%go]

%p = getelementptr %nd* %hd ,i64 0,i32 1

%tl = load %nd** %p

%hd8 = bitcast %nd* %hd to i8*

call void @free(i8* %hd8)

%d = icmp eq %nd* %tl , null

br i1 %d, label %fin , label %loop

fin: ret void }

declare void @free(i8*)

#include <stdlib.h>

typedef struct s {

int data;

struct s* next; }

nd;

void list_dispose

(nd* l){

nd *hd=l, *tl=l;

while(tl) {

hd = tl;

tl = tl->next;

free(hd); }

}

Figure 2 The Architecture of llStar. Wavy boxes represent user input; double
lines represent tool interaction, dashed lines inputs and solid lines outputs.

llStar

Bitcode

Specs
yes/fail

bitcode rules user rules

coreStar SMT solver

the file (e.g. the offsets and paddings of fields inside structures). Currently,
llStar is based on the latest stable version of LLVM (version 3.3).

Specs
This contains specs for functions defined and used in the input program.

coreStar coreStar is an open-source symbolic execution and frame inference
engine for separation logic. Bitcode programs are translated into coreStar’s
generic language of assignments (defined by their specs), gotos and labels
(see §3.2). We include the latest development version of coreStar in llStar.

bitcode rules When performing symbolic execution of programs, coreStar needs
to manipulate the formula describing the current state. The base theory of
coreStar is agnostic in the predicates used to describe symbolic states. To
cope with user-defined predicates (such as our pointsto and malloced above),
additional logic rules have to be given to coreStar. llStar generates the
rules needed to analyse a bitcode module automatically, for instance to unfold
pointers to a structure into pointers to each field of the structure (see §3.3).

user rules
Users of llStar may define their own set of rules on top of llStar.

In §4.1, we give examples of such rules to reason about singly-linked lists
and directed acyclic graphs. The soundness and termination of the system of
rules are currently the responsibility of the user.

SMT solver At many points during the symbolic execution, queries are made to
an SMT solver by coreStar to solve entailments between values. We have
added support for translating the datatypes needed by llStar into SMT

6 Jules Villard

queries to coreStar (see §3.4). Our SMT solver of choice is z3 [11] (version
4.3.2), which supports all the needed theories.

Usage Given a bitcode program and function specifications (pairs of pre and
postconditions) as input, llStar uses coreStar to perform symbolic execution
and prove that the program is memory safe (there are no null pointer dereferences,
invalid accesses to memory, double frees, or memory leaks) and partially correct
with respect to the given spec: from all states satisfying the given precondition,
if the program terminates then its final states satisfy the postcondition. The
final output of the tool is either a proof of the program properties or an error
(due either to a bug in the program or to an incompleteness in llStar).

We can for instance give the following spec to Ex. 1, which states that it will
consume a single pointer to a nd whose second field is nil:

list_dispose(l): {l
nd
ÞÝÑ {v1, null}}{emp}

By default, llStar will be able to generate enough logic rules from the bitcode
of Ex. 1 to understand e.g. that l ` 8 points to the second field of l, and
thus will be able to prove list_dispose correct w.r.t. this spec1. However, it
will not be able to prove that the program works on nil-terminated linked lists
of any size, and the reason is that llStar has no built-in support for such
inductive predicates. Instead, the user has to supply llStar with additional rules
for reasoning about linked lists (see §4.1). With appropriate rules, llStar can
prove the richer specification tlsegpnd, l, nullqutempu, i.e. dispose_list takes
any linked list of nodes of type nd terminated by null and consumes it. Omitting
the call to free, calling free twice, or lowering the load after free would violate
any of the two specifications (resp. it would leak memory, free the same pointer
twice, or dereference after free), which llStar would report as errors.

3 Symbolic execution of bitcode

In this section, we describe how llStar performs symbolic execution on bitcode
programs. We begin with a description of the symbolic states used to represent
the current state of the execution.

3.1 Symbolic States

Value and type expressions handled by llStar include those of LLVM, with the
addition of existentially quantified variables, and expressions that correspond
to sizes of types or to the evaluation of bitcode operations on values, such as
additions, conversions, comparisons, and address calculations. Formally, llStar
types and expressions can be described by the grammars below, where N , n and
i are integer constants, primed variables x1 represent existentials, fpt is a floating
point type, fp a floating point number, and cond , conv t1

t and bop are respectively
condition evaluations, conversions (from type t to t1) and binary operations as
described in §2.1:

1 In fact, as explained at the end of §3.2, the precondition must also require that l

was allocated on the heap by malloc – and thus can be free’d.

Here be wyverns! Verifying LLVM bitcode with llStar 7

e ::“ x1 | iN n | fpt fp | re1, . . . , ens | eareis | earei :“ evs | {e1, . . . , en } | field i
tpeq

| eltptrpe, t, re1; . . . ; ensq | sizeof ptq | condpe1, e2q | conv t1

t peq | boppe1, e2q
t ::“ iN | half | . . . | double | t* | [e x t] | {t1, . . . , tn }

Symbolic states consist of separation logic formulas of a particular shape, as
supported by coreStar, described by the following grammar:

A ::“ emp | ep
t
ÞÝÑ ev | mallocedpep, esq | . . . spatial predicates

| e1 “ e2 | e1 ‰ e2 | e1 ąbv e2 | e1 ďfp e2 | . . . pure predicates
| A1 ˚A2 | A1 _A2 connectives

The emp predicate denotes the empty heap (where nothing is allocated); ep
t
ÞÝÑ ev

denotes a heap such that only cells at addresses ep, . . . , ep ` sizeof ptq ´ 1 are
allocated and they form a value ev of type t; mallocedpep, esq indicates that cells
ep, . . . , ep` es´ 1 form a heap-allocated block. Pure predicates implicitly denote
an empty heap and are equalities, disequalities, and (typed) comparisons between
expressions. The connectives are standard; the separating conjunction ˚ is that
of separation logic: a memory state satisfies A1 ˚ A2 if it can be split into two
disjoint (with respect to their domains) heaps h1 and h2 such that h1 (A1 and
h2 (A2. On pure formulas (those made from pure predicates and connectives
only), ˚ coincides with the classical conjunction ^. While the base fragment of
llStar above does not include, e.g., inductive predicates, users of llStar are
encouraged to define their own (see §4.1), using coreStar’s support for arbitrary
abstract predicates [22].

To illustrate our assertion language, in particular the use of malloced, let us
present the specs of malloc and free, as defined in llStar’s distribution:

malloc(s): {emp}{pmallocedpret,sq ˚ ret
[s x i8]
ÞÝÝÝÝÝÑ v1q _ ret “ null}

free(x): {mallocedpx,s’q ˚ x
[s’ x i8]
ÞÝÝÝÝÝÑ v1}{emp}

Nothing is required in the precondition of malloc (emp), and it returns either a
pointer to an uninitialised array of bytes of the appropriate size and a malloced

predicate, or the null pointer. The spec of free does the opposite.

3.2 Bitcode axiomatisation

Target language Let us now define the axiomatic semantics of bitcode instructions
over symbolic states. We use coreStar as our symbolic execution engine, which
supports three types of instructions: specification assignments, labels, and non-
deterministic gotos between several labels, according to the following grammar:

CI ::“ x “ tAutBupe1, . . . , enq | labelplq | gotopl1, . . . , lnq

where l, l1, . . . , ln are labels (represented by strings), x is a program variable, A
and B are formulas respectively representing the pre and post-condition of the
assignment, and e1 to en are expressions to be assigned to the parameters of the
specification. Special variables ret and p1 to pn can appear free in A and B and
represent the return value that will be assigned to x and the parameters of the
assignment (in our case, parameters will only be used to interpret function calls).

8 Jules Villard

Figure 3 Axioms for bitcode instructions.

Unreachable : Γ, unreachable tfalseutempu
BinaryOps : Γ, x = bop t v1, v2 x “ temputret “ boppv1, v2qu
ConvOps : Γ, x = convop t1 v to t2 x “ temputret “ conv t2

t1
pvqu

Cond : Γ, x = ti, fucmp cond, t v1, v2 x “ temputret “ condpv1, v2qu
GetEltPtr : Γ, x = getelementptr t* v, t1 v1, ..., tn vn

 x “ temputret “ eltptrpv, t* , rv1; . . . ; vnsqu

Alloca : Γ, x = alloca(t) x “ temputret
t
ÞÝÑ x1u

Ret : Γ, ret t v ret “ tALLOCAutret “ vu

Load : Γ, x = load t* v x “ tv
t
ÞÝÑ eutret “ e ˚ v

t
ÞÝÑ eu

Store : Γ, store t* v1 v2 tv1
t
ÞÝÑ eutv1

t
ÞÝÑ v2u

Call : Γ, x = call t f(v1, ...,vn) x “ tAutBupv1, . . . , vnq
UncondBr : Γ, br label l gotoplq

When ret does not appear in the specification, we omit x “ from the syntax,
and similarly for parameters pi. Specification assignments may also n ą 1 return
values, in which case they are written ret1 to retn. Let us briefly review how
coreStar interprets this language. See [3] for a more in-depth description.

Instructions are arranged in a control flow graph (CFG) that accounts for
sequential composition between instructions and connects gotos to their corre-
sponding labels. Executing gotopl1, . . . , lnq non-deterministically jumps to any
of the labels l1 to ln.

To execute an assignment x “ tAutBupe1, . . . , enq in a given symbolic state
C, coreStar looks for a solution to the frame problem between C and A, i.e. for
a formula F such that the following implication holds:

C $ Arp1, . . . , pnÐe1, . . . , ens ˚ F

If a frame F is found, the state resulting from the execution of the command is

pBrp1, . . . , pnÐe1, . . . , ens ˚ F qrx, retÐx
1, xs

for some fresh existential variable x1 (to account for the update to the value of x).
Absence of a solution to the frame problem can be due either to an incompleteness
in the proof rules or to a bug in the program, and is reported as an error.

Most of the bitcode instructions are directly translated by llStar into speci-
fication assignments, as shown in Fig. 3. The translation assumes a context Γ
mapping function names to their specifications. The error instruction unreachable

is given an inconsistent precondition false. Rules BinaryOps, ConvOps, Cond

and GetEltPtr convert value manipulations into the corresponding expressions.
Rule Alloca allocates a pointer of the corresponding type on the stack. Such
pointers have the same status as pointers allocated on the heap (as returned
by malloc) but lack the additional resource that would allow them to be free’d.
At the exit points of a function, the current memory state typically contains
stack-allocated pointers that have to be reclaimed. When translating a function,
llStar accumulates resources allocated by alloca into a formula ALLOCA that
is consumed by ret instructions. The remaining rules are straightforward.

The remaining instructions: conditional br and phi, are implemented as extra
nodes in the CFG, placed between source and target blocks. Between the source

Here be wyverns! Verifying LLVM bitcode with llStar 9

block and the first (resp. second) destination block of a br instruction, the
condition is assumed to be true (resp. false). Coming from a predecessor block,
variables set by phi instructions get the appropriate values. We illustrate these
transformations on the three blocks below and their associated CFG:

l0: C0; l1: x = phi i32 [%y,l0] [52,l2]; l2: C2

br i1 c,label l1,l2 y = phi i32 [%x,l0] [%y,l2]; C1

l0: C0
l1: C1 l2: C2temputc “ i1 1u

px, yq“temputret1“y ˚ ret2“xu

temputc“i1 0u

px, yq“temputret1“52 ˚ ret2“yu

3.3 Frame inference for symbolic states

As mentioned in §2.2, coreStar does not know how to manipulate predicates
used to describe symbolic states on its own. When faced with a frame inference
problem between formulas A and B, coreStar repeatedly rewrites the sequent
A $ B using logic rules given by llStar (and the user, see §4.1), in order, until
it can be reduced to F $ emp (at which point F is a solution to the frame
problem [3]), or until no further rule can be applied (in which case the proof fails).
In this section, we describe the set of rules handled by llStar to analyse bitcode
modules. Some of these rules will be the same for every module, while others will
be generated depending on the parameters of the module (in particular the size
and layout of data types and the structures it defines).

Each logic rule accepted by coreStar describes patterns to be syntactically
matched by coreStar in the current formula or sequent. Patterns can use pattern
variables, prefixed by a question mark (e.g. ?x), which match any expression.
Logic rules can be of one of the following three forms:

– Rewrite rules e1 “ e2: If an expression in a formula matches e1 then the
equality is added to it.

– Equivalence rules Aô B: Every sub-formula matching A is changed into B.
– Sequent rules A2 $ B2

A1 $ B1 or

A2 $ B2

A1 $ B1

C

They allow coreStar to rewrite the current goal if it is of the form AF ˚A11 $
B11 ˚ F where A11 and B11 match A1 and B1 respectively. The extra bits of
state are implicitly carried over, unchanged, to the premise. The optional
side-condition C is a pure formula (one without spatial predicates) that is
passed to the SMT solver; if present, the rule can only trigger if C is satisfied.

Logic rules work towards matching spatial predicates from the right-hand side
formula (RHS) of a sequent with predicates on the left-hand side formula (LHS).
If this can be done for the whole spatial part of the RHS, then all that remains
is to check implication between two pure formulas, which can be discharged
by the SMT solver. The spatial logic rules of llStar are of three sorts: (1)
rules that unfold aggregates (arrays and structures) on the LHS into field-wise

10 Jules Villard

pointers when trying to match a sub-part of that aggregate on the RHS, so as to
expose a matching pointer on the LHS; (2) rules that match pointers of possibly
different types (e.g. a byte array returned by malloc and the corresponding
structure pointer); (3) rules that fold fragmented aggregates into a single pointer.
Rules of the first two kinds are always tried before rules of the third kind, so
as to avoid infinite proof attempts where aggregates get repeatedly folded and
unfolded. Other choices of rules are of course possible, for instance choosing to
systematically unfold instead of folding structures. In practice, we found the
current set of rules to strike a good balance between precision and performance.
For instance, arriving at the load instruction in Ex. 1 from the first specification

(given in §2.2), we must prove e.g. A “ %hd ` 8
nd˚
ÞÝÝÑ v1 from a heap containing

%hd
nd
ÞÝÑ {i1, null}. This will be (1) unfolded into the two fields of nd, at which

point (2) A will be matched (instantiating v1 “ null). After the load, (3) the
two fields are collated back into the original structure pointer.

Fig. 4 presents the main rewrite rules used by llStar. Size expressions are
replaced by concrete values given by LLVM, and null is replaced by a nil bitvector
of the appropriate size. Similarly, eltptr is rewritten using the concrete offsets
inside structures and arrays; since array sizes do not matter for address calculation,
array-based eltptr values are rewritten into pointer-based ones. Equivalence
rules convert comparison operations whose truth values are known into the
corresponding predicates. An allocated null pointer predicate is unsatisfiable
(rule NullPtr). Spatial predicates on the right-hand side of a sequent can be
removed if they are matched on the left-hand side according to RemoveMalloc,
RemovePtr and RemovePtrEq. The latter asks the SMT solver if the roots are
equal (in which case the equality is added to the LHS for later reuse), while
RemovePtr triggers when coreStar can immediately deduce root equality from
the current state. Both rules then require the values pointed to to be equal. The
second rule is useful when pointer equality stems from bitvector arithmetic or
record or array theory facts. It is given to coreStar in a lower priority order so
that it is seldom called unduly. Similarly, two kinds of unfolding rules for structures
are generated: UnfoldStruct handles common cases where the RHS requires
exactly one of the fields of the structure, while UnfoldStructInner is more
general (and costly) and matches pointers to anywhere contained in a field (for
instance to match parts of a nested sub-structure). Rules ByteArrayToStruct

and TypeFromByteArray are examples of reinterpretations of the types of
values stored in memory, in these cases between arrays of bytes and pointers to
types of the same size. Both give a more precise type to the byte array, guided
by the current goal pointer (and in the case of the former, by the fact that its
address was derived using a jump inside type st). The last rule folds back the
pointers forming a structure into a single structure pointer.

3.4 Pure entailments

Entailments between pure formulas, and side conditions of sequent rules are
translated by coreStar into SMT formulas passed to the z3 SMT solver. We have

Here be wyverns! Verifying LLVM bitcode with llStar 11

Figure 4 Selected builtin rules. Given an LLVM type t, SZ ptq is the concrete size
of t. Given an LLVM structure type st , Nst is the number of fields in the structure,
ti is the type of the i-th field, and Opst , iq its offset. Rules parameterised by a
type are generated for all types in a module. Rules parameterised by indices in a
structure are generated for all fields in that structure.

sizeof ptq “ SZ ptq sizeof p[?n x ?t]q “ ?n ˚ sizeof p?tq eltptrp?x, ?t, rsq “ ?x

eltptrp?x, [?n x ?t], ?jq
“ eltptrp?x, ?t*, ?jq

eltptrp?x, ?t*, ?n :: ?jq
“ eltptrp?x` ?n ˚ sizeof p?tq, ?t, ?jq

eltptrp?x, st , i :: ?jq “ eltptrp?x`Opst , iq, ti, ?jq null “ ipSZ pi8*qq 0

eqp?x, ?yq “ i1 0 ô ?x ‰ ?y bvugtp?x, ?yq “ i1 1 ô ?x ąbv ?y

NullPtr

null
?t
ÞÝÝÑ ?v $

RemoveMalloc
$?n “ ?m

mallocedp?x, ?nq $ mallocedp?x, ?mq

RemovePtr
$?v “ ?w

?x
?t
ÞÝÝÑ ?v $?x

?t
ÞÝÝÑ ?w

UnfoldStructj(st)
Nst

˚
i“0

?x`Opst , iq
tiÞÝÑ field i

stp?vq $?x`Opst , jq
tjÞÝÑ ?w

?x
st
ÞÝÑ ?v $?x`Opst , jq

tjÞÝÑ ?w

UnfoldStructInnerj(st)
Nst

˚
i“0

?x`Opst , iq
tiÞÝÑ field i

stp?vq $?y
?t
ÞÝÝÑ ?w

?x
st
ÞÝÑ ?v $?y

?t
ÞÝÝÑ ?w

?x`Opst, jq ďbv ?y ˚
?y` sizeof p ?tq ďbv ?x`Opst, j ` 1q

ByteArrayToStruct(st)

?x
st
ÞÝÑ conv st

[SZ pstq x i8]p?vq $?y
?t
ÞÝÝÑ ?w

?x
[SZ pstqx i8]
ÞÝÝÝÝÝÝÝÝÝÑ?v ˚ ?y“eltptrp?x, st ,?jq $?y

?t
ÞÝÝÑ?w

RemoveEqPtr
?x “ ?y $?v “ ?w

?x
?t
ÞÝÝÑ ?v $?y

?t
ÞÝÝÑ ?w

?x “ ?y

TypeFromByteArray(t)

?x
t
ÞÝÑ conv t

[SZ ptq x i8]p?vq $?x
t
ÞÝÑ ?w

?x
[SZ ptq x i8]
ÞÝÝÝÝÝÝÝÝÝÑ ?v $?x

t
ÞÝÑ ?w

FoldStructL(st)

?x
st
ÞÝÑ { ?v0, . . . , ?vNst } $

Nst

˚
i“0

?x`Opst , iq
tiÞÝÑ ?vi $

extended this translation, which previously only dealt with mathematical integer
arithmetic, to handle the theories of bitvector and floating point arithmetic,
records, and arrays, which respectively correspond to LLVM integers and floats,
structure values and array values. Let us detail the translation of structure values.
To each structure type corresponds a particular record type whose size matches
the number of fields of the structure. A structure value {e1, . . . , en } of type st
is then translated into a constructor for the corresponding record type, applied
to the translations of e1 to en, and field i

stpeq is translated into the corresponding
record selector. For instance, at the beginning of the analysis of Ex. 1, llStar

12 Jules Villard

declares a new record type nd with constructor mk_nd and two selectors nd_fld0

and nd_fld1 to represent values of the %nd type, which gets sent to z3:

(declare-datatypes () ((nd (mk_nd (nd_fld0 (_ BitVec 32))

(nd_fld1 (_ BitVec 64))))))

The translations of other values are straightforward, with one exception: we
have to account for the fact that pointer arithmetic operations do not overflow as
long as the computed addresses fall within allocated parts of the memory. This
is expressed by the following rule:

?x
?t
ÞÝÑ ?v ˚ ?x`bv sizeof p?tq ąbv ?x $

?x
?t
ÞÝÑ ?v $

Finally, to minimise clutter, some types can be omitted in llStar formulas.
We built a type inference engine to guess missing types before formulas are passed
to the SMT solver, which expects constants to be declared with their types.

4 Analysing bitcode programs with llStar

In this section, we show how llStar can be easily extended with additional
theories and list further experiments.

4.1 Extending llStar with new theories

Data structures are often axiomatised by logic rules that are independent from the
exact structures used to form each node. For instance, the theory of singly-linked
list can be written using only lsegps, x, yq and sllnodeps, x, nq predicates, which
denote respectively a list segment from location x to location y and an individual
element of the list at address x, abstracting for instance from which field of x
contains the value n to the next pointer. The variable s is used to distinguish
between lists of different types. Rules of this form are desirable because they are
module-independent and thus can be written once and for all for each theory.

To facilitate this style llStar provides a tpi1, . . . , inq “ node directive, indicat-
ing that structures of type t correspond to predicates node with n` 2 arguments:
the structure type t, the address of the structure and the values of fields i1 to in.
The logic rules to link pointers to abstract nodes are then generated by llStar.
For instance, to prove the list specification of Ex. 1, we declare ndp1q “ sllnode.
Users can also write their own “glue”, e.g. for nodes of a special shape.

We were able to directly import the standard shape domain for singly-linked
list segments of Distefano et al. [12] as logic rules for llStar in this fashion
(similarly to jStar). We then proved a range of examples on linked lists (see §4.2).

We have also developed a minimalistic theory (which does not include ab-
straction rules used to normalise formulas when trying to find a loop invariant)
for binary directed acyclic graphs (dags), based on ramification [18], which we
used to prove programs similar to the recursive dag marking of Fig. 5.2 Let us
describe its main rules briefly. The current theory reasons about dagps, x, dq and

2 For now, the theory is only able to handle programs that do not modify the link
structure of the dag. Lifting this restriction would involve tracking the memory
footprint of predicates, to be able to apply more general theorems from [18].

Here be wyverns! Verifying LLVM bitcode with llStar 13

Figure 5 Marking a dag.

typedef struct ds{int m;

struct ds *l, *r;} dn;

void mark(dn *x) {

if (!x || x->m) return;

x->m = 1;

mark(x->l);mark(x->r);}

dagnodeps, x, l, rq predicates, where x is the
root of the dag or dag node, d is an ab-
stract value recording the link structure of
the dag (defined by a relation mdagpd, xq “
pl, rq), and l and r are the left and right
children of the node x. We are able to
prove for instance that mark satisfies the
spec tdagpdn, x, d1qutdagpdn, x, d1qu, which ex-
presses that the link structure of the dag rooted at x does not change. Crucially,
a non-empty dag unfolds into a node and an overlapping conjunction Y̊ of its
two subdags, which denotes that they occupy potentially overlapping regions of
the heap. This is used in the rule below, triggered when dereferencing x in Fig. 5:

dagnodep?s, ?x, l1, r1q ˚ pdagp?s, l1, ?dq Y̊ dagp?s, r1, ?dqq
˚mdagp?d, ?xq “ pairpl1, r1q

$?x
?t
ÞÝÑ ?v

dagp?s, ?x, ?dq ˚ ?x ‰ null $?x
?t
ÞÝÑ ?v

Isolating one of the subdags from an overlapping conjunction, e.g. to mutate
the values of its nodes, or to make recursive calls to mark, leaves an incomplete
dag structure expressed using the existential magic wand ´́f of separation logic3:

dagp?s, ?l, ?dxq ´́f pdagp?s, ?l, ?dxq Y̊ dagp?s, ?r, ?dyqq $

dagp?s, ?l, ?dxq Y̊ dagp?s, ?r, ?dyq $ dagp?s, ?l, ?dq

Another rule eliminates ´́f to recreate the original overlapping conjunction,
triggered e.g. after each recursive call to mark in Fig. 5:

dagp?s, ?l, ?dxq Y̊ dagp?s, ?r, ?dyq $

dagp?s, ?l, ?dxq ˚ pdagp?s, ?l, ?dxq ´́f pdagp?s, ?l, ?dxq Y̊ dagp?s, ?r, ?dyqqq $

The soundness of these rules is based on general facts about dag [18]. At the
time of this writing, coreStar only allows ˚ and _ to compose formulas, so Y̊
and ´́f are currently represented by abstract predicates whose arguments are
formulas rewritten as “punned” terms. This may change in future versions.

4.2 Experiments

Tab. 1 lists some of our experimental results. The programs analysed come from
several languages: C, C++ (compiled using clang) and Fortran (compiled using gcc

with the dragonegg plugin), illustrating the advantage of working at the level of an
intermediate language like bitcode. The first example is a collection of simple func-
tions that access individual fields in dynamically allocated structures, sometimes
disposing them at the end. The second example showcases pointer arithmetic in C.
The list examples consist of one loop each, which respectively traverses a linked list,
disposes it node by node, and reverses a list in place. Their specs are all straightfor-
ward to express (e.g. list_reverse(x): tlsegpnd, x, nullqutlsegpnd, ret, nullqu),

3 A state satisfies A ´́f B if there is a state satisfying A that can be added to it so
that the resulting state satisfies B.

14 Jules Villard

program LoC -O LoC.ll time (s) z3.t (s) z3.% theory

field access.ll 124 - 124 2.00 0.57 28.5% -
pointer arith.c 29 -O0 113 6.43 1.50 23.3% -

list traverse.cpp 10 -O0 24 3.15 1.46 46.3% lists
list dispose.c 20 -O0 20 2.59 1.08 41.7% lists
list dispose.c (Fig. 1) 20 -O2 17 2.18 0.88 40.4% lists
list dispose.f 20 -O1 20 2.59 1.08 41.7% lists
list ip reverse.c 16 -O0 40 19.84 4.32 21.8% lists
list ip reverse.c 16 -O2 19 3.64 2.09 57.4% lists

mark dag.c (Fig. 5) 11 -O0 35 0.82 0.26 32.1% dag
mark dag obfuscated.c 17 -O0 65 7.20 0.81 11.2% dag
mark dag obfuscated.c 17 -O2 31 0.93 0.21 22.6% dag

Table 1. Experimental results. The first column lists test cases; the second their
numbers of lines; the third is the optimisation level of the compiler; the fourth is the
number of bitcode lines. The next three columns respectively list the total time of the
analysis, and the time spent in z3 both in seconds and as a percentage of the total
time. The last column lists theories passed to llStar. The experiments were run on a
3.3GHz dual-core i3-3220 desktop machine.

and the loop invariants are discovered automatically. The last example is a modifi-
cation (preserved by -O2) of mark (Fig. 5) that swaps pointers to the left and right
children before and after each recursive call. These recursive functions are easier
to verify than iterative functions, since there is no loop invariant to discover. All
these test cases (and more) can be found in the llStar distribution [26].

5 Conclusion

We have described the llStar tool for automatic, compositional verification of
LLVM bitcode. llStar balances several requirements to reason concisely about
intricate, low-level heap manipulation. Verification of basic LLVM programs is rea-
sonably efficient, while llStar’s flexible proof engine allows for easy prototyping
of new theories for heap structures.

A few lines of work are envisioned for the future. Some have to do with
increasing the level of automation in llStar. One could for instance add bi-
abduction [7] support to llStar in order to discover function preconditions
automatically, or implement cyclic abduction techniques to discover the inductive
predicates used in a program, together with their logic rules [4]. Finally, connecting
llStar to an abstract interpreter [9] would allow for discovering richer loop
invariants with respect to values. In fact, this would solve one of the main current
limitations of llStar when reasoning about array programs. Some of these
features are present in coreStar to some degree, but would require better support
and integration to be used in practice by llStar. It would also be invaluable to
have llStar generate machine-checkable proofs of bitcode programs. This could
for instance be achieved by drawing a connection between llStar proof rules
and the certified semantics of bitcode defined by VellVM [27].

Here be wyverns! Verifying LLVM bitcode with llStar 15

References

1. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code.
In CAV, 2011.

2. M. Botincan, M. J. Parkinson, and W. Schulte. Separation logic verification of C
programs with an SMT solver. Electr. Notes Theor. Comput. Sci., 2009.

3. M. Botinčan, D. Distefano, M. Dodds, R. Grigore, and M. J. Parkinson. coreStar:
The core of jStar. In BOOGIE, 2011.

4. J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively defined safety
and termination preconditions. Technical Report RN/13/14, University College
London, 2013.

5. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, 2008.

6. C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods, 2011.

7. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. J. ACM, 2011.

8. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In POPL, 2009.

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

10. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-
based modular verification of concurrent C. In ICSE Companion, 2009.

11. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
12. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on

separation logic. In TACAS, 2006.
13. D. Distefano and M. J. Parkinson. jStar: Towards practical verification for Java.

In OOPSLA, 2008.
14. K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-level list

manipulation. In SAS, 2013.
15. S. Falke, D. Kapur, and C. Sinz. Termination analysis of c programs using compiler

intermediate languages. In RTA, 2011.
16. The Frama-C platform for static analysis of C programs, 2008.
17. G. He, S. Qin, C. Luo, and W.-N. Chin. Memory usage verification using Hip/Sleek.

In ATVA, 2009.
18. A. Hobor and J. Villard. The ramifications of sharing in data structures. In POPL,

2013.
19. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data

structures. In POPL, 2001.
20. C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO, 2004.
21. J. A. Navarro Pérez and A. Rybalchenko. Separation logic modulo theories. In

APLAS, 2013.
22. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL,

2005.
23. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using SMT. In

CAV, 2013.
24. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, 2002.
25. C. Sinz, F. Merz, and S. Falke. LLBMC: A bounded model checker for LLVM’s

intermediate representation - (competition contribution). In TACAS, 2012.
26. J. Villard. llStar website. http://bitbucket.org/jvillard/llstar/.
27. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the

LLVM intermediate representation for verified program transformations. In POPL,
2012.

http://bitbucket.org/jvillard/llstar/

	Here be wyverns! Verifying LLVM bitcode with llStar
	Jules Villard

