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Abstract. There has been a large body of work on local reasoning for
proving the absence of bugs, but none for proving their presence. We
present a new formal framework for local reasoning about the presence of
bugs, building on two complementary foundations: 1) separation logic and
2) incorrectness logic. We explore the theory of this new incorrectness
separation logic (ISL), and use it to derive a begin-anywhere, intra-
procedural symbolic execution analysis that has no false positives by
construction. In so doing, we take a step towards transferring modular,
scalable techniques from the world of program verification to bug catching.
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1 Introduction

There has been significant research on sound, local reasoning about the state for
proving the absence of bugs (e.g., [26,41,30,13,29,2]). Locality leads to techniques
that are compositional both in code (concentrating on a program component) and
in the resources accessed (spatial locality), without tracking the entire global state
or the global program within which a component sits. Compositionality enables
reasoning to scale to large teams and codebases: reasoning can be done even when
a global program is not present (e.g., a library, or during program construction),
without having to write the analogue of a test or verification harness, and the
results of reasoning about components can be composed efficiently [11].

Meanwhile, many of the practical applications of symbolic reasoning have
aimed at proving the presence of bugs (i.e., bug catching), rather than proving
their absence (i.e., correctness). Logical bug catching methods include symbolic
model checking [7,12] and symbolic execution for testing [9]. These methods are
usually formulated as global analyses; but, the rationale of local reasoning holds
just as well for bug catching as it does for correctness: it has the potential to
benefit scalability, reasoning about incomplete code, and continuous incremental
reasoning about a changing codebase within a continuous integration (CI) sys-
tem [34]. Moreover, local evidence of a bug without usually-irrelevant contextual
information can be more convincing and easier to understand and correct.

There do exist symbolic bug catchers that, at least partly, address scalability
and continuous reasoning. Tools such as Coverity [5,32] and Infer [18] hunt for
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bugs in large codebases with tens of millions of LOC, and they can even run
incrementally (within minutes for small code changes), which is compatible with
deployment in CI to detect regressions. However, although such tools intuitively
share ideas with correctness-based compositional analyses [16], the existing
foundations of correctness-based analyses do not adequately explain what these
bug-catchers do, why they work, or the extent to which they work in practice.

A notable such example is the relation between separation logic (SL) and Infer.
SL provides novel techniques for local reasoning [28], with concise specifications
that focus only on the memory accessed [36]. Using SL, symbolic execution need
not begin from a “main” program, but rather can “begin anywhere” in a codebase,
with constraints on the environment synthesized along the way. When analyzing a
component, SL’s frame rule is used in concert with abductive inference to isolate
a description of the memory utilized by the component [11]. Infer was closely
inspired by SL, and demonstrates the power of SL’s local reasoning: the ability to
begin anywhere supports incremental analysis in CI, and compositionality leads
to highly scalable methods. These features have led to non-trivial impact: a recent
paper quotes over 100,000 Infer-reported bugs fixed in Facebook’s codebases, and
thousands of security bugs found by a compositional taint analyzer, Zoncolan [18].
However, Infer reports bugs using heuristics based on failed proofs, whereas the SL
theory behind Infer is based on over-approximation [11]. Thus, a critical aspect of
Infer’s successful deployment is not supported by the theory that inspired it. This
is unfortunate, especially given that the begin-anywhere and scalable aspects of
Infer’s algorithms do not appear to be fundamentally tied to over-approximation.

In this paper, we take a step towards transferring the local reasoning techniques
from the world of program verification to that of bug catching. To approach
the problem from first principles, we do not try to understand tools such as
Coverity and Infer as they are. Instead, we take their existence and reported
impact as motivation for revisiting the foundations of SL, this time re-casting it
as a formalism for proving the presence of bugs rather than their absence.

Our new logic, incorrectness separation logic (ISL), marries local reasoning
based on SL’s frame rule with the recently-advanced incorrectness logic [35], a
formalism for reasoning about errors based on an under-approximate analogue of
Hoare triples [43]. We observe that the original SL model, based on partial heaps,
is incompatible with local, under-approximate reasoning. The problem is that the
original model does not distinguish a pointer known to be dangling from one about
which we have no knowledge; this in turn contradicts the frame rule for under-
approximate reasoning. However, we recover the frame rule for a refined model
with negative heap assertions of the form x 67→ , read “invalidated x”, stating that
the location at x has been deallocated (and not re-allocated). Negative heaps
were present informally in the original Infer, unsupported by theory but added for
reporting use-after-free bugs (i.e., not for proving correctness). Interestingly, this
semantic feature is needed in ISL for logical (and not merely pragmatic) reasons,
in that it yields a sound logic for proving the presence of bugs: when ISL identifies
a bug, then there is indeed a bug (no false positives), given the assumptions of
the underlying ISL model. (That is, as usual, soundness is a relationship between
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assumptions and conclusions, and whether those assumptions match reality (i.e.,
running code) is a separate concern, outside the purview of logic.)

As well as being superior for bug reporting, our new model has a pleasant
fundamental property in that it meshes better with intuitions originally expressed
of SL. Specifically, our model admits a footprint theorem, stating that the meaning
of a command is solely determined by its transitions on input-output heaplets
of minimal size (including only the locations accessed), a theorem that was not
true in full generality for the original SL model. Interestingly, ISL supports local
reasoning for technically simpler reasons than the original SL (see §4.2).

We validate part of the ISL promise using an illustrative program analysis,
Pulse, and use it to detect memory safety bugs, namely null-pointer-dereference
and use-after-free bugs. Pulse is written inside Infer [18] and deployed at Facebook
where it is used to report issues to C++ developers. Pulse is currently under active
development. In this paper, we explore the intra-procedural analysis, i.e., how
it provides purely local reasoning about one procedure at a time without using
results from other procedures; we defer formalising its inter-procedural (between
procedures) analysis to future work. While leaving out the inter-procedural
capabilities of Pulse only partly validates the promise of the ISL theory, it already
demonstrates how ISL can scale to large codebases, and run incrementally in a
way compatible with CI. Pulse thus has the capability to begin anywhere, and it
achieves scalability while embracing under- rather than over-approximation.

Outline In §2 we present an intuitive account of ISL. In §3 we present the ISL
proof system. In §4 we present the semantic model of ISL. In §5 we present our
ISL-based Pulse analysis. In §6 we discuss related work and conclude. The full
proofs of all stated theorems are given in the technical appendix [38].

2 Proof of a Bug

We proceed with an intuitive description of ISL for detecting memory safety
bugs. To do this, in Fig. 1 we present an example of C++ use-after-lifetime bug,
abstracted from real occurrences we have observed at Facebook, where use-after-
lifetime bugs were one of the leading developer requests for C++ analysis. Given
a vector v, a call to push back(v) in the std::vector library may cause the
internal array backing v to be (deallocated and subsequently) reallocated when v

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.
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void deref_after_pb(std::vector<int> *v) {

int *x = &v->at(1);

v->push_back(42);

std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was

potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));

6. v->push_back(42);

7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

ISL Triples The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ε : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing
C, where ε denotes an exit condition indicating either normal or exceptional
(erroneous) termination. The under-approximate triples can be equivalently
interpreted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the
postcondition post describes a superset of states that are reachable from the
precondition pre, and may include states unreachable from pre. Hoare logic is
about over-approximation, allowing false positives but not negatives, whereas
ISL is about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v) Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v 7→ a ∗ a 7→−] client(v) [er(lrx ) : ∃a′. v 7→ a′ ∗ a′ 7→− ∗ a 67→ ] (PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx ) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).

• The result is under-approximate: any state satisfying the result assertion can
be reached from some state satisfying the presumption.

• The specification is local: it focuses only on memory locations in the client(v)
footprint (i.e., those touched by client(v)), and ignores other locations.

Let us next consider how we reason symbolically about this bug. Note that for
the client(v) execution to reach an error at line lrx , the push back(v) call
within it must not cause an error. That is, in contrast to PB-Client, we need a
specification for push back(v) that describes normal, non-erroneous termination.
We specify this normal execution with the ok exit condition as follows:

[v 7→ a ∗ a 7→−] push back(v) [ok : ∃a′. v 7→ a′ ∗ a′ 7→− ∗ a 67→ ] (PB-Ok)

PB-Ok describes the case when push back(v) frees the internal array of v at a
(denoted by a 67→ in the result), and subsequently reallocates it at a′. Consequently,
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void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) ,
local z, y in

z := *;
(assume(z 6= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) ,
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

as a is invalidated after the push back(v) call, the instruction following the call
in client(v) dereferences invalidated memory at lrx, causing an error.

Note that the result assertion in PB-Ok is strictly under-approximate in that
it is smaller (stronger) than the exact “strongest post”. Given the assertion in
the presumption, the strongest post must also consider the else clause of the
conditional, when nondet() returns zero and push back(v) does nothing. That is,
the strongest post is the disjunction of the given result and the presumption. The
ability to go below the strongest post soundly is a hallmark of under-approximate
reasoning: it allows for compromise in an analyzer, where we might choose, e.g.,
to limit the number of paths explored for efficiency reasons, or to concretize an
assertion partially when symbolic reasoning becomes difficult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in §3. For
legibility, uses of the Frame rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a 7→− with a 67→ . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x 7→ −] free(x) [ok : emp ∧ loc(x)]
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[v 7→ a ∗ a 7→−]

local y, z in

z :=*; //Havoc

[ok :z=1 ∗ v 7→ a ∗ a 7→−]

( assume(z 6= 0); //Assume

[ok :z=1 ∗ z 6=0 ∗ v 7→ a ∗ a 7→−]

lrv : y := [v]; //Load

[ok :z=1 ∗ y=a ∗ v 7→ a ∗ a 7→−]

lf : free(y); //Free

[ok :z=1 ∗ y=a ∗ v 7→ a ∗ a 67→ ]

y := malloc(); //Alloc1,Choice

[ok :z=1 ∗ v 7→ a ∗ a 67→ ∗ y 7→−]
[v] := y; //Store

[ok :z=1 ∗ v 7→ y ∗ a 67→ ∗ y 7→−]
) + (. . .) //Choice

[ok :z=1 ∗ v 7→ y ∗ a 67→ ∗ y 7→−]
//Local

[ok : ∃a′. v 7→ a′ ∗ a′ 7→− ∗ a 67→ ]

[v 7→ a ∗ a 7→−]

local x in

x := [v]; //Load

[ok :x=a ∗ v 7→ a ∗ a 7→−]

push back(v); //PB-Ok

[ok :∃a′.x=a ∗ v 7→a′∗ a′ 7→−∗a 67→ ]//Cons

[ok :∃a′.x=a ∗ v 7→a′∗ a′ 7→−∗x 67→ ]

lrx : [x] := 88; //StoreEr

[er(lrx ) : ∃a′. x=a ∗ v 7→ a′ ∗ a′ 7→− ∗ x 67→ ]

//Local

[er(lrx ) : ∃a′. v 7→ a′ ∗ a′ 7→− ∗ a 67→ ]

Fig. 3. The proof sketches of PB-Ok (left) and PB-Client (right).

Here, emp describes the empty heap and loc(x) states that x is an addressable
location; e.g., x cannot be null. Note that this ISL triple is valid in that any
state satisfying the result assertion can be obtained from one satisfying the
presumption assertion, and thus we do have a true under-approximate triple.

However, in SL one can arbitrarily extend the state using the frame rule:

` [p] C [ε :q] mod(C) ∩ fv(r) = ∅
` [p ∗ r] C [ε :q ∗ r]

(Frame)

Intuitively, the state described by the frame assertion r lies outside the footprint
of C and thus remains unchanged when executing C. However, if we do this with
the free(x) axiom above, choosing x 7→ − as our frame, we run into a problem:

[x 7→ − ∗ x 7→ −] free(x) [ok : (emp ∧ loc(x)) ∗ x 7→ −]

Here, the presumption is inconsistent but the result is not, and thus there is no
way to get back to the presumption from the result; i.e., the triple is invalid. In
over-approximate reasoning this does not cause a problem since an inconsistent
precondition renders an over-approximate triple vacuously valid. By contrast, an
inconsistent presumption does not validate under-approximate reasoning.

Our way out of this conundrum is to consider a modified model in which
the knowledge that a location was previously freed is a resource-oriented fact,
using negative heap assertions. The negative heap assertion x 67→ conveys more
knowledge than the loc(x) assertion. Specifically, x 67→ conveys: 1) the knowledge
that x is an addressable location; 2) the knowledge that x has been deallocated;
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Comm3C ::= skip | x :=e | x :=* | assume(B) | local x in C | C1;C2 | C1 + C2 | C?

| x := alloc() | l: free(x) | l:x := [y] | l: [x] := y | l: error

if B then C1 else C2 , (assume(B);C1) + (assume(!B);C2)

while(B) C , (assume(B);C)?; assume(!B)

assert(B) , (assume(!B); error) + assume(B)

x := malloc() , x := alloc() + x := null

Fig. 4. The ISL Language (above); encoding standard constructs in ISL (below).

and 3) the ownership of location x. In other words, x 67→ is analogous to the
points-to assertion x 7→ − and is thus manipulated similarly, taking up space in
∗-conjuncts. That is, we cannot consistently ∗-conjoin x 67→ either with x 7→ −
or with itself: x 7→ − ∗ x 67→ ⇔ false and x 67→ ∗ x 67→ ⇔ false.

With such negative assertions, we can specify free() as the Free axiom in
Fig. 5. Note that this allows us to recover the frame rule: when we frame x 7→ −
on both sides, we obtain the inconsistent assertion x 7→ − ∗ x 67→ (i.e., false) in
the result, which always makes an under-approximate triple vacuously valid.

We demonstrated how we arrived at negative heaps as a theoretical solution
to recover the frame rule. However, negative heaps are more than a technical
curiosity. In particular, a similar idea was informally present in Infer and has
been used formally to reason about JavaScript [21]. Moreover, as we show in §4,
negative heaps give rise to a footprint theorem (see Theorem 2).

Negative heap assertions were previously used informally in Infer. They were
also independently and formally introduced in a separation logic for JavaScript [21]
to state that a field is not present in a JavaScript object, which is a natural
property to express when reasoning about JavaScript.

Programming Language To keep our presentation concise, we employ a simple
heap-manipulating language as shown in Fig. 4. We assume an infinite set Val of
values; a finite set Var of (program) variables; a standard interpreted language
for expressions, Exp, containing variables and values; and a standard interpreted
language for Boolean expressions, BExp. We use v as a metavariable for values;
x, y, z for program variables; e for expressions; and B for Boolean expressions.

Our language is given by the C grammar and includes the standard constructs
of skip, assignment (x := e), non-deterministic assignment (x := *, where *

denotes a non-deterministically picked value), assume statements (assume(B)),
scoped variable declaration (local x in C), sequential composition (C1;C2),
non-deterministic choice (C1 + C2) and loops (C?), as well as error statements
(error) and heap-manipulating instructions. Note that deterministic choice and
loops (e.g., if and while statements) can be encoded using their non-deterministic
counterparts and assume statements, as shown in Fig. 4.

To better track errors, we annotate instructions that may cause an error with
a label l∈Label. When an error is encountered (e.g., in l: error), we report the
label of the offending instruction (e.g., l). As such, we only consider well-formed
programs: those with unique labels across their constituent instructions. For
brevity, we drop the instruction labels when they are immaterial to the discussion.
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As is standard practice, we use error statements as test oracles to detect
violations. In particular, error statements can be used to encode assert state-
ments as shown in Fig. 4. Heap-manipulating instructions include allocation,
deallocation, lookup and mutation. The x := alloc() instruction allocates a new
(unused) location on the heap and returns it in x, and can be used to represent the
standard, possibly null-returning malloc() from C as shown in Fig. 4. Dually,
free(x) deallocates the location denoted by x. Heap lookup x := [y] reads the
contents of the location denoted by y and returns it in x; heap mutation [x] := y
overwrites the contents of the location denoted by x with y.

Assertions The ISL assertion language is given by the grammar below, where
⊕∈{=, 6=, <,≤, . . .}. We use p, q, r as metavariables for assertions.

Ast 3 p, q, r ::= false | p⇒ q | ∃x. p | e⊕ e′ classical and Boolean assertions
| emp | e 7→ e′ | e 67→ | p ∗ q structural assertions

As we describe formally in §4, assertions describe sets of states, where each state
comprises a (variable) store and a heap. The classical (first-order logic) and
Boolean assertions are standard. Other classical connectives can be encoded using
existing ones (e.g., ¬p , p⇒ false). Aside from the highlighted x 67→ , structural
assertions are as defined in SL [28], and describe a set of states by constraining
the shape of the underlying heap. More concretely, emp describes states in which
the heap is empty; e 7→ e′ describes states in which the heap comprises a single
location denoted by e containing the value denoted by e′; and p ∗ q describes
states in which the heap can be split into two disjoint sub-heaps, one satisfying p
and the other q. We often write e 7→ − as a shorthand for ∃v. e 7→ v.

As described above, we extend our structural assertions with the negative heap
assertion e 67→ (read “e is invalidated”). As with its positive counterpart e 7→ e′,
the negative assertion e 67→ describes states in which the heap comprises a single
location at e. However, whilst e 7→ e′ states that the location at e is allocated
(and contains the value e′), e 67→ states that the location at e is deallocated.

ISL Proof Rules (Syntactic ISL Triples) We present the ISL proof rules in
Fig. 5. As in incorrectness logic [35], the ISL triples are of the form ` [p] C [ε :q],
denoting that every state in the result assertion q is reachable from some state
in the presumption assertion p with exit condition ε. That is, for each state σq in
q, there exists σp in p such that executing C on σp terminates with ε and yields
σq. As such, since false describes an empty state set, [p] C [ε : false] is vacuously
valid for all p, C, ε. Dually, [false] C [ε :q] is always invalid when q 6⇒ false.

An exit condition, ε ∈ Exit, may be: 1) ok , denoting a successful execution;
or 2) er(l), denoting an erroneous execution with the error encountered at the
l-labeled instruction. Compared to [35], we further annotate our error conditions
to track the offending instructions. Moreover, whilst [35] rules only detect explicit
errors caused by error statements, ISL rules additionally allow us to track errors
caused by memory safety violations, namely “use-after-free” violations, where
a previously deallocated location is subsequently accessed in the program, and
“null-pointer-dereference” violations. Although it is straightforward to distinguish
between explicit and memory safety errors, for brevity we use er(l) for both.
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Skip
` [emp] skip [ok :emp]

Assign
`
[
x=x′

]
x :=e

[
ok :x=e[x′/x]

] Havoc
`
[
x=x′

]
x :=* [ok : x=v]

Assume
` [emp] assume(B) [ok : B]

Error
` [emp] l: error [er(l) : emp]

Seq1
` [p] C1 [er(l) : q]

` [p] C1;C2 [er(l) : q]

Seq2
` [p]C1 [ok : r] ` [r] C2 [ε :q]

` [p] C1;C2 [ε :q]

Loop1
` [p]C? [ok : p]

Choice
` [p]Ci [ε :q] for some i∈{1, 2}

` [p] C1 + C2 [ε :q]

Exist
` [p]C [ε :q] x 6∈ fv(C)

` [∃x.p] C [ε :∃x.q]

Loop2
` [p] C?;C [ε :q]

` [p] C? [ε :q]

Cons
p′ ⇒ p `

[
p′
]
C
[
ε :q′

]
q ⇒ q′

` [p] C [ε :q]

Disj
` [p1] C [ε :q1] ` [p2] C [ε :q2]

` [p1 ∨ p2] C [ε :q1 ∨ q2]

Subst
` [p] C [ε :q] y 6∈ fv(p,C, q)
` [p[y/x]] C[y/x] [ε :q[y/x]]

Local
` [p] C [ε :q]

` [∃x. p] local x in C [ε :∃x. q]

Frame
` [p] C [ε :q] mod(C) ∩ fv(r) = ∅

` [p ∗ r] C [ε :q ∗ r]

Alloc1
`
[
x=x′

]
x := alloc() [ok : x 7→ −]

Free
` [x 7→ e] l: free(x) [ok : x 67→ ]

Alloc2
`
[
x=x′ ∗ y 67→

]
x := alloc() [ok : x=y ∗ y 7→ −]

FreeEr
` [x 67→ ] l: free(x) [er(l) : x 67→ ]

FreeNull
` [x=null] l: free(x) [er(l) : x=null]

Load
`
[
x=x′∗ y 7→e

]
l:x := [y]

[
ok :x=e[x′/x] ∗ y 7→e[x′/x]

] Store
` [x 7→e] l: [x] := y [ok :x 7→y]

LoadEr
` [y 67→ ] l:x := [y] [er(l) : y 67→ ]

StoreEr
` [x 67→ ] l: [x] := y [er(l) : x 67→ ]

LoadNull
` [y=null] l:x := [y] [er(l) : y=null]

StoreNull
` [x=null] l: [x] := y [er(l) : x=null]

Fig. 5. The ISL proof rules where x and x′ are distinct variables.

Thanks to the separation afforded by ISL assertions, compared to incorrect-
ness triples in [35], ISL triples are local in that the states described by their
presumptions only contain the resources needed by the program. For instance, as
skip requires no resource for successful execution, the presumption of Skip is sim-
ply given by emp, which remains unchanged in the result. Similarly, assume(B)
requires no resource and results in a state satisfying B. The Assign rule is analo-
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gous to its SL counterpart. Similarly, x := * in Havoc assigns a non-deterministic
value to x. Although these axioms (and Alloc1, Alloc2) ask for a single equality
x = x′ in their presumption, one can derive more general triples starting from
any presumption p by picking a fresh x′ and applying the axiom, and the Frame

and Cons rules on the equivalent presumption x = x′ ∗ p[x′/x].
Note that skip, assignments and assume statements always terminate suc-

cessfully (with ok). By contrast, l: error always terminates erroneously (with
er(l)) and requires no resource. The ISL rules Seq1, Seq2, Choice, Loop1, Loop2,
Cons, Disj and Subst are as in [35]. The Seq1 rule captures short-circuiting when
the first statement (C1) encounters an error and thus the program terminates
erroneously. Analogously, Seq2 states that when C1 executes successfully, the
program terminates with ε when the subsequent C2 statement terminates with ε.
The Choice rule states that the states in q are reachable from p when execut-
ing C1 + C2 if they are reachable from p when executing either branch. Loop1
captures immediate exit from the loop; Loop2 states that q is reachable from p
when executing C? if it is reachable after a non-zero number of C iterations.

The Cons rule allows us to strengthen the result and weaken the presumption:
if q′ is reachable from p′, then the smaller q is reachable from the bigger p. Note
that compared to SL, the direction of implications in the Cons premise are
flipped. Using Cons, we can rewrite the premises of Disj as [p1 ∨ p2] C [ε :q1]
and [p1 ∨ p2] C [ε :q2]. As such, if both q1 and q2 are reachable from p1 ∨ p2, then
q1 ∨ q2 is also reachable from p1 ∨ p2, as shown in Disj. The Exist rule is derived
from Disj; Subst is standard and allows us to substitute x with a fresh variable y;
Local is equivalent to that in [35] but uses the Barendregt variable convention,
renaming variables in formulas instead of in commands to avoid clashes.

As in SL, the crux of ISL reasoning lies in the Frame rule, allowing one to
extend the presumption and the result of a triple with disjoint resources in r.
The fv(r) function returns the set of free variables in r, and mod(C) returns the
set of (program) variables modified by C (i.e., those on the left-hand of ‘:=’ in
assignment, lookup and allocation). These definitions are standard and elided.

Negative assertions allow us to detect memory safety violations when accessing
deallocated locations. For instance, FreeEr states that attempting to deallocate
x causes an error when x is already deallocated; mutatis mutandis for LoadEr

and StoreEr. As shown in Alloc2, we can use negative assertions to allocate a
previously-deallocated location: if y is deallocated (y 67→ holds in the presumption),
then it may be reallocated. The FreeNull, LoadNull and StoreNull rules
state that accessing x causes an error when x is null. Finally, Load and Store

describe the successful execution of heap lookup and mutation, respectively.

Remark 1. Note that mutation and deallocation rules in SL are given as {x 7→ −}
[x] := y {x 7→ y} and {x 7→ −} free(x) {emp}; i.e., the value of x is existentially
quantified in the precondition. We can similarly rewrite the ISL rules as:

StoreWeak

` [x 7→ −] [x] := y [ok : x 7→ y]
FreeWeak

` [x 7→ −] free(x) [ok : x 67→ ]

However, these rules are too weak. For instance, we cannot use StoreWeak to
prove [x 7→ 7] [x] := y [ok : x 7→ y]. This is because the implications in the premise



Local Reasoning About the Presence of Bugs 11

of the Cons rule are flipped from those in their SL counterpart, and thus to use
StoreWeak we must show x 7→ − ⇒ x 7→ 7 which we cannot. Put differently,
StoreWeak states that for some value v, executing [x] := y on a state satisfying
x 7→ v yields a state satisfying x 7→ y. However, this statement is valid for all
values of v. As such, we strengthen the presumption of Store to x 7→ e, allowing
for an arbitrary (universally quantified) expression e at x.

In general, in over-approximate logics (e.g., SL) the aim is to weaken the
preconditions and strengthen the postconditions of specifications as much as
possible. This is to ensure that we can optimally apply the Cons rule to adapt the
specifications to broader contexts. Conversely, in under-approximate logics (e.g.,
ISL) we should strengthen the presumptions and weaken the results as much as
possible, since the implication directions in the premise of Cons are flipped.

Remark 2. The backward reasoning rules of SL [28] are generally unsound for ISL,
just as the backward reasoning rules of Hoare logic are unsound for incorrectness
logic [35]. For instance, the backward axiom for store is {x 7→− ∗ (x 7→ y −∗ p)}
[x] := y {p}. However, taking p = emp yields an inconsistent precondition,
resulting in the triple {false} [x] := y {emp}, which is valid in SL but not ISL.

Proving PB-Ok and PB-Client We next return to the proof sketch of PB-Ok

in Fig. 3. For brevity, rather than giving full derivations, we follow the classical
Hoare logic proof outline, annotating each line of the code with its presumption
and result. We further commentate each proof step and write e.g., //Choice to
denote an application of Choice. Note that when applying Choice, we pick a
branch (e.g., the left branch in PB-Ok) to execute. Observe that unlike in SL
where one needs to reason about all branches, in ISL it suffices to pick and reason
about a single branch, and the remaining branches are ignored.

As in Hoare logic proof outlines, we assume that Seq2 is applied at every step;
i.e., later instructions are executed only if the earlier ones execute successfully.
In most steps, we apply Frame to frame off the unused resource r, carry out
the instruction effect, and subsequently frame on r. For instance, when verifying
z := * in the proof sketch of PB-Ok, we apply Havoc to pick a non-zero value for
z (in this case 1) after the assignment. As such, since the presumption of Havoc

is emp, we use Frame to frame off the resource v 7→ a∗a 7→− in the presumption,
apply Havoc to obtain z = 1, and subsequently frame on v 7→ a ∗ a 7→−, yielding
z = 1 ∗ v 7→ a ∗ a 7→ −. For brevity, we keep the applications of Frame and
Seq2 implicit and omit them in our annotations. The proof of PB-Client in
Fig. 3 is then straightforward and applies the PB-Ok specification when calling
push back(v). We refer the reader to the technical appendix [38] where we apply
ISL to a further example to detect a null-pointer-dereference bug in OpenSSL.

4 The ISL Model

Denotational Semantics We present the ISL semantics in Fig. 6. The semantics
of a statement C ∈ Comm under an exit condition ε ∈ Exit, written JCKε, is
described as a relation on program states. A program state, σ ∈ State, is a pair
of the form (s, h), comprising a (variable) store s ∈ Store and a heap h ∈ Heap.
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J.K : Comm→ Exit→ P(State× State) σ ∈ State , Store×Heap

s ∈ Store , Var
fin→ Val h ∈ Heap , Loc

fin
⇀ Val ] {⊥} l ∈ Loc ⊆ Val

JskipKok ,
{

(σ, σ) σ ∈ State
}

JskipKer(−) , ∅

Jx := eKok , {((s, h), (s[x 7→ s(e)], h))} Jx := eKer(−) , ∅

Jx := *Kok ,
{

((s, h), (s[x 7→ v], h)) v ∈ Val
}

Jx := *Ker(−) , ∅

Jassume(B)Kok ,
{

(σ, σ) σ=(s, h) ∧ s(B) 6=0
}

Jassume(B)Ker(−) , ∅

Jl: errorKok , ∅ Jl: errorKer(l′) ,
{

(σ, σ) l=l′
}

JC1;C2Kε ,
{

(σ, σ′)
ε 6= ok ∧ (σ, σ′) ∈ JC1Kε
∨ ∃σ′′. (σ, σ′′) ∈ JC1Kok ∧ (σ′′, σ′) ∈ JC2Kε

}
Jlocal x in CKε ,

{
((s[x 7→ v], h), (s ′[x 7→ v], h ′)) ((s, h), (s ′, h ′)) ∈ JCKε

}
JC1 + C2Kε , JC1Kε ∪ JC2Kε

JC?Kε ,
⋃

i∈N JCiKε with C0 , skip and Ci+1 , C;Ci

Jx := alloc()Kok ,
{(
σ, (s[x 7→ l], h[l 7→ v])

) σ=(s, h) ∧ v ∈ Val
∧ (l 6∈ dom(h) ∨ h(l)=⊥)

}
Jx := alloc()Ker(−) , ∅

Jl: free(x)Kok ,
{(
σ, (s, h[s(x) 7→ ⊥])

)
σ=(s, h) ∧ h(s(x)) ∈ Val

}
Jl: free(x)Ker(l′) ,

{
(σ, σ) l=l′∧ σ=(s, h) ∧ (s(x)=null ∨ h(s(x))=⊥)

}
Jl:x := [y]Kok ,

{(
σ, (s[x 7→ v], h)

)
σ=(s, h) ∧ h(s(y))=v ∈ Val

}
Jl:x := [y]Ker(l′) ,

{
(σ, σ) l=l′∧ σ=(s, h) ∧ (s(y)=null ∨ h(s(y))=⊥)

}
Jl: [x] := yKok ,

{(
σ, (s, h[s(x) 7→ s(y)])

)
σ=(s, h) ∧ h(s(x)) ∈ Val

}
Jl: [x] := yKer(l′) ,

{
(σ, σ) l=l′∧ σ=(s, h) ∧ (s(x)=null ∨ h(s(x))=⊥)

}
LempM,

{
(s, h) dom(h)=∅

}
Le 7→ e′M,

{
(s, h) dom(h)={s(e)} ∧ h(s(e))=s(e′) 6=⊥

}
Le 67→ M,

{
(s, h) dom(h)={s(e)} ∧ h(s(e))=⊥

}
Lp∗qM,

{
σp • σq σp ∈ LpM ∧ σq ∈ LqM

}
where (s1, h1) • (s2, h2) ,

{
(s1, h1 ] h2) if s1=s2 ∧ dom(h1) ∩ dom(h2)=∅
undefined otherwise

Fig. 6. The ISL denotational semantics (top); the ISL assertion semantics (bottom).

A store is a function from variables to values. Given a store s, expression e
and Boolean expression B, we write s(e) and s(B) for the values to which e and
B evaluate under s, respectively. These definitions are standard and omitted.

A heap is a partial function from locations, Loc, to Val ] {⊥}. We model
heaps as partial functions as they may grow gradually by allocating additional
locations. We use the designated value ⊥ 6∈ Val to track those locations that
have been deallocated. That is, given l ∈ Loc, if h(l) ∈ Val then l is allocated
in h and holds value h(l); and if h(l) = ⊥ then l has been deallocated. As we
demonstrate shortly, we use ⊥ to model invalidated assertions such as x 67→ .
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The semantics in Fig. 6 closely corresponds to ISL rules in Fig. 5. For instance,
Jx := [y]Kok underpins Load, while Jx := [y]Ker(−) underpins LoadEr and
LoadNull; e.g., if the location at y is deallocated (h(s(y))=⊥), then executing
x := [y] terminates erroneously as captured by Jx := [y]Ker(−). The semantics of
mutation, allocation and deallocation are defined analogously. As shown, skip,
assignment and assume(B) never terminate erroneously (e.g., JskipKer(−)=∅),
and the semantics of their successful execution is standard. The two disjuncts
in JC1;C2Kε capture Seq1 and Seq2, respectively. The semantics of C1 + C2 is
defined as the union of those of its two branches. The semantics of C? is defined
as the union of the semantics of zero or more C iterations.

Heap Monotonicity Note that for all C, ε and (σp, σq) ∈ JCKε, the (domain
of the) underlying heap in σp monotonically grows from σp to σq and never
shrinks. In particular, whilst the heap domain grows via allocation, all other base
cases (including deallocation) leave the domain of the heap (i.e., the heap size)
unchanged – deallocation merely updates the value of the given location in the
heap to ⊥ and thus does not alter the heap domain. This is in contrast to the
original SL model [28], where deallocation removes the given location from the
heap, and thus the underlying heap may grow or shrink. As we discuss shortly,
this monotonicity is the key reason why our model supports a footprint theorem.

ISL Assertion Semantics The semantics of ISL assertions is given at the
bottom of Fig. 6 via the function L.M : Ast → P(State), interpreting each
assertion as a set of states. The semantics of classical and Boolean assertions
are standard and omitted. As described in §3, emp describes states in which the
heap is empty; and e 7→ e′ describes states of the form (s, h) in which h contains
a single location at s(e) with value s(e′). Analogously, e 67→ describes states of
the form (s, h) in which h contains a single deallocated location at s(e). Finally,
the interpretation of p ∗ q contains a state σ iff it can be split into two parts,
σ = σp • σq, such that σp and σq are included in the interpretations of p and q,
respectively. The function • : State× State⇀ State given at the bottom of
Fig. 6 denotes state composition, and is defined when the constituent stores agree
and the heaps are disjoint. For brevity, we often write σ ∈ p for σ ∈ LpM.

Semantic Incorrectness Triples We next present the formal interpretation of
ISL triples. Recall from §3 that an ISL triple [p] C [ε :q] states that every state
in q is reachable from some state in p under ε. Put formally:

|= [p] C [ε :q]
def⇐⇒ ∀σq ∈ q. ∃σp ∈ p. (σp, σq) ∈ JCKε

Finally, in the following theorem we show that the ISL proof rules are sound : if a
triple ` [p]C [ε :q] is derivable using the rules in Fig. 5, then |=[p]C [ε :q] holds.

Theorem 1 (Soundness). For all p,C, ε, q, if ` [p] C [ε :q], then |=[p] C [ε :q].

4.1 The Footprint Theorem

The frame rule of SL enables local reasoning about a command C by concentrating
only on the parts of the memory that are accessed by C, i.e., the C footprint :
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foot (C1 + C2) ε , foot (C1) ε ∪ foot (C2) ε

foot (l: free(x)) ok ,
{(

(s, [l 7→ v]), (s, [l 7→ ⊥])
)

s(x)=l ∧ v ∈ Val
}

foot (l: free(x)) er(l′) ,
{(

(s, [l 7→ ⊥]), (s, [l 7→ ⊥])
)

l=l′∧ s(x)=l
}

∪
{(

(s, h0), (s, h0)
)

l=l′∧ s(x)=null
}

Fig. 7. The foot (.) function (excerpt), where h0 denotes an empty heap (dom(h0)=∅).

‘To understand how a program works, it should be possible for reasoning and
specification to be confined to the cells that the program actually accesses.
The value of any other cell will automatically remain unchanged.’ [36]

Local reasoning is then enabled by semantic observations about the local effect
of heap accesses. In what follows we describe some of the semantic structure
underpinning under-approximate local reasoning, including how it differs from the
classic over-approximate theory. Our main result is a footprint theorem, stating
that the meaning of a command C is determined by its action on the “small”
part of the memory accessed by C (i.e., the C footprint). The overall meaning of
C can then be obtained by “fleshing out” its footprint.

To see this, consider the following example:

1. free(y);
2. l2: free(y) + free(x); (foot)
3. l3: free(x) + skip

For simplicity, let us ignore variable stores for the moment and consider the
executions of foot from an initial heap h , [lx 7→ 1, ly 7→ 2, lz 7→ 3], containing
locations lx, ly and lz, corresponding to variables x, y and z, respectively. Note
that starting from h, foot gives rise to four executions depending on the +
branches taken at lines 2 and 3. Let us consider the successful execution from
h that first frees y, then frees x (the right branch of + on line 2), and finally
executes skip (the right branch of + on line 3). The footprint of this execution
from h is then given by (ok : [lx 7→ 1, ly 7→ 2], [lx 7→ ⊥, ly 7→ ⊥]), denoting an ok
execution from the initial sub-heap [lx 7→ 1, ly 7→ 2], yielding the final sub-heap
[lx 7→ ⊥, ly 7→ ⊥] upon termination. That is, the initial and final sub-heaps in
the footprint do not include the untouched location lz as it remains unchanged,
and the overall effect of foot is obtained from its footprint by adding lz 7→ 3 to
both the initial and final sub-heaps; i.e., by “fleshing out” the footprint.

Next, consider the execution in which the left branch of + on line 2 is taken,
resulting in a use-after free error. The footprint of this second execution from
h is given by (er(l2) : [ly 7→ 2], [ly 7→ ⊥]), denoting an error at l2. Note that as
this execution terminates erroneously at l2, unlike in the first execution, location
lx remains untouched by foot and is thus not included in the footprint.

Put formally, let foot (.) : Comm → Exit → P(State × State) denote a
footprint function such that foot (C) ε describes the minimal state needed for
some C execution under ε: if ((s, h), (s ′, h ′))∈foot (C) ε, then h contains only the
locations accessed by some C execution, yielding h ′ on termination. In Fig. 7 we
present an excerpt of foot (.), with its full definition given in [38]. Our footprint
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theorem (Theorem 2) then states that any pair (σp, σq) resulting from executing
C (i.e., (σp, σq) ∈ JCKε) can be obtained by fleshing out a pair (σ′

p, σ
′
q) in the C

footprint (i.e., (σ′
p, σ

′
q) ∈ foot (C) ε): (σp, σq) = (σ′

p • σr, σ′
q • σr) for some σr.

Theorem 2 (Footprints). For all C and ε: JCKε = frame (foot (C) ε), where
frame (R) ,

{
(σp • σr, σq • σr) (σp, σq) ∈ R

}
.

We note that our footprint theorem is a positive by-product of the ISL model
and not the ISL logic. That is, the footprint theorem is an added bonus of the
heap monotonicity in the ISL model, brought about by negative heap resources,
and is orthogonal to the notion of under-approximation. As such, the footprint
theorem would be analogously valid in the original SL model, were we to alter
its model to achieve heap monotonicity through negative heaps. That said, there
are important differences with the classic SL theory, which we discuss next.

4.2 Differences with the Classic (Over-Approximate) Theory

Existing work [40,14] presents footprint theorems for classical SL based on the
notion of safe states ; i.e., those that do not lead to erroneous executions. This is
understandable as the informal reasoning which led to the frame rule for SL was
based on safety [36,45]. According to the fault-avoiding interpretation of an SL
triple {p}C {q}, deemed invalid when a state in p leads to an error, if C accesses
a location outside p, then this leads to a safety violation. As such, any location
not guaranteed to exist in p must remain unchanged, thereby yielding the frame
rule. The existing footprint theorems were for safe states only.

By contrast, our theorem considers footprints involving both unsafe and
safe states. For instance, given the foot program and an initial state (e.g., h
in §4.1), we distinguished a footprint leading to an erroneous execution (e.g.,
(er(l2) : [ly 7→ 2], [ly 7→ ⊥])) from one leading to a safe execution (e.g., (ok :
[lx 7→ 1, ly 7→ 2], [lx 7→ ⊥, ly 7→ ⊥])). This distinction is important, as otherwise
we could not distinguish further bugs that follow a safe execution. To see this,
consider a second error in foot, namely the possible use-after-free of x on line 3,
following a successful execution of lines 1 and 2.

For reasoning about incorrectness, it is essential that we consider unsafe states
when accounting for why things work; this is a technical difference with the classic
footprint results. But it also points to a deeper conceptual difference between the
correctness and incorrectness theories. Above, we explained how safety, and its
violation, played a crucial role in justifying the frame rule of over-approximate
SL. However, as we describe below, ISL and its frame rule do not rely on safety.

As shown in [35], an under-approximate triple can be equivalently defined as:

[p]C [ε :q]
def⇐⇒ post(C, p) ⊇ q, where post(C, p) describes the states obtained by

executing C on p. While this under-approximate definition equivalently justifies
the frame rule, the analogous over-approximate (Hoare) triple obtained by flipping

⊇ (i.e., {p} C {q} def⇐⇒ post(C, p) ⊆ q) invalidates the frame rule:

{true} [x] := 23 {true}
{x 7→ 17 ∗ true} [x] := 23 {x 7→ 17 ∗ true}

(Frame)
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The premise of this derivation is valid according to the standard interpretation
of over-approximate triples, but its conclusion (obtained by framing on x 7→ 17)
certainly is not, as it states that the value of x remains unchanged after mutation.

The frame rule is then recovered by strengthening the {p}C{q} interpretation,
either by requiring that executing C on p not fault (fault avoidance), or by “baking
in” frame preservation: ∀r. post(C, p ∗ r) ⊆ q ∗ r. Both solutions then invalidate
the premise of the above derivation. We found it remarkable that our ISL theory
is consistent with the technically simpler interpretation of triples – namely as
post(C, p) ⊇ q, the dual of Hoare’s interpretation – and that it supports a simple
footprint theorem at once, again in contrast to the over-approximate theory.

5 Begin-Anywhere, Intra-Procedural Symbolic Execution

ISL lends itself naturally to the definition of forward symbolic execution analyses.
We demonstrate that using the ISL rules, it is straightforward to derive a begin-
anywhere, intra-procedural analysis that allows us to infer valid ISL triples
automatically for a given piece of code, with the goal of finding only true bugs
reachable from an initial state. This is implemented in the intra-procedural-
only mode of the Pulse analysis inside Infer [18] (accessible by passing --pulse

--pulse-intraprocedural-only to infer). The analysis follows principles from
bi-abduction [11], but takes its most successful application – bug catching [18] – as
the sole objective. This allows us to make a number of adjustments and to obtain
an analysis that is a much closer fit to the ISL theory of under-approximation than
the original bi-abduction analysis was to the SL theory of over-approximation.

The original bi-abduction analysis in Abductor [11] and Infer [18] aimed at
discovering fault-avoiding specifications for procedures. Ideally, one would find
specifications for all procedures in the codebase, all the way to an entry-point
(e.g., the main() function), thus proving the program safe. In practice, however,
virtually all sizable codebases have bugs, and known abstract domains are impre-
cise when proving memory safety for large codebases. As such, specifications were
found for only 40–70% of the procedures in the experiments of [11]. Nonetheless,
proof failures, a by-product of proof search, became practically more valuable
than proofs, as they can indicate errors. Complex heuristics came into play to
classify proof failures and to report to the programmer those more likely to be
errors. These heuristics have not been given a formal footing, contributing to the
gap between the theory of proofs and the practice of bug catching.

Pulse approaches bug reporting more directly: by looking for them. It infers
under-approximate specifications, while recording invalidated addresses. If such
an address is later accessed, a bug is reported soundly, in line with the theory.

Symbolic Execution In Fig. 8 we present our symbolic execution as big-step,
syntax-directed inference rules of the form [p0]C0 [ε0 :q0] C  [p] C0;C [ε :q],
which can be read as: “having already executed C0 yielding (discovering) the
presumption p0 and the result q0, then executing C yields the presumption p
and result q”. As is standard in SL-based tools [4,11], our abstract states consist
of ∗-conjoined predicates, with the notable addition of the invalidated assertion
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p, q ::= emp | e⊕ e′ | e 7→ e′ | e 67→ | p ∗ q Symbolic Heaps

SE-Seq
[p0]C0 [ok : q0] C1  [p1] C0;C1 [ε1 :q1]

[p1]C0;C1 [ε1 :q1] C2  [p2] C0;C1;C2 [ε2 :q2]

[p0]C0 [ok : q0] C1;C2  [p2] C0;C1;C2 [ε2 :q2]

SE-Choice
[p0]C0 [ok : q0] Ci  [pi] C0;Ci [εi :qi]

[p0]C0 [ok : q0] C1 + C2  [pi] C0;C1 + C2 [εi :qi]

SE-Store
q ∗M a x 7→ e ∗ F mod(C) ∩ fv(M) = ∅

[p]C [ok : q] [x] := y  [p ∗M ]C; [x] := y [ok : x 7→ y ∗ F ]

SE-StoreEr
q ` x 67→ ∗ true or q ` x = null ∗ true

[p]C [ok : q] l: [x] := y  [p] C; l: [x] := y [er(l) : q]

Fig. 8. Symbolic heaps (above) and selected symbolic execution rules (below).

and omission of inductive predicates. The latter are not needed because we never
perform the over-approximation steps that would introduce them.

SE-Seq describes how the symbolic execution goes forward step by step.
SE-Choice describes how the analysis computes one specification per path taken
in the program. To ensure termination, loops are unrolled up to a fixed bound
Nloops, borrowing from symbolic bounded model checking [12]. These two ideas
avoid the arduous task of inventing join and widen operators [15]. For added
efficiency, in practice we also limit the maximum number of paths leading to the
same program point to a fixed bound Ndisjuncts. The Nloops and Ndisjunctsbounds
give us easy “knobs” to tune the precision of the analysis. Note that pruning
paths by limiting disjuncts is also sound for under-approximate reasoning [35].

To analyze a program C, we start from C0 = skip and produce [emp] skip
[ok : emp] C [p] skip;C [ε :q]. As |= [emp] skip [ok : emp] holds and symbolic
execution rules preserve validity, we then obtain valid triples for C by Theorem 3.

Theorem 3 (Soundness of Symbolic Execution). If |= [p0] C0 [ε :q0] and
[p0]C0 [ε0 :q0] C [p]C0;C [ε :q], then |= [p] C0;C [ε :q].

Symbolic execution of individual commands follows the derived SymbExec

rule below, with the side-condition that mod(C0)∩ fv(M) = mod(C)∩ fv(F ) = ∅:
SymbExec

[p0]C0 [ok : q0]

[p0 ∗M ]C0 [ok : q0 ∗M ] q0 ∗M a p ∗ F
[p] C [ε :q]

[p ∗ F ] C [ε :q ∗ F ]

[p0 ∗M ] C0;C [ε :q ∗ F ]

If executing C0 yields the presumption p0 and the current state q0, then
SymbExec allows us to execute the next command C with specification [p] C
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[ε :q]. This may 1) materialize a state M that is missing from q0 (and is needed
to execute C); and 2) carry over an unchanged frame F . The unknowns M and
F in the bi-abduction question p ∗ F ` q0 ∗M have analogous counterparts in
over-approximate bi-abduction; but, as in the Cons rule, their roles have flipped:
the frame F is abduced, while the missing M is framed (or anti-abduced).

Bi-abduction and ISL Bi-abduction is arguably a better fit for ISL than SL:
in SL adding the missing M to the overall precondition p0 is only valid for
straight-line code, and not across control flow branches. Intuitively, there is no
guarantee that a safe precondition for one path is safe for the other. This is
especially the case in the presence of non-determinism or over-approximation
of Boolean conditions, where one cannot find definitive predicates to force the
analysis down one path. It is thus necessary to re-execute the whole procedure on
the inferred preconditions, eliminating those that are not safe for all paths. By
contrast, in our setting SE-Choice is sound, and this re-execution is not needed!

We allow the analysis to abduce information only for successful execution;
erroneous executions have to be manifest and realizable using only the information
at hand. We do this by requiring M to be emp in SymbExec when applied to error
triples. We go even further and require that the implication be in both directions,
i.e., that the current state force the error – note that if q ` x 67→ ∗ true then there
exists F such that x 67→ ∗ F ` q, and similarly for q ` x = null ∗ true. This is a
practical choice and only one of many ways to decide where to report, trying to
avoid blaming the code for issues it did not itself cause. For instance, thanks to this
restriction, we do not report on [x] := 10 (which has error specifications through
StoreEr and StoreNull) unless a previous instruction actively invalidated x.
This choice also chimes well with the fact that the analysis can start anywhere in
a program and give results relevant to the code analyzed.

Solving the bi-abduction entailment in SymbExec can be done using the
techniques developed for SL [11, §3]. We do not detail them here as they are
straightforwardly adapted to our simpler setting without inductive predicates.

Finding a Bug in client, Automatically We now describe how Pulse au-
tomatically finds a proof of the bug in the unnanotated code of client from
Fig. 3, by automatically applying the only possible symbolic execution rule at
each step. Starting from emp and going past the first instruction x := [v] requires
solving v 7→ u ∗ F ` emp ∗M . The bi-abduction entailment solver then answers
with F = emp and M = v 7→ u, yielding the inferred presumption v 7→ u
and the next current state v 7→ u ∗ x = u. The next instruction is the call to
push back(v). For ease of presentation, let us consider this library call as an
axiomatized instruction that has been given the specification in Fig. 3. This
corresponds to writing a model for it in the analyzer, which is actually the case in
the implementation, although the analysis would work equally well if we were to
inline the code inside client. Applying SymbExec requires solving the entailment
v 7→ a ∗ a 7→ w ∗ F ` v 7→ u ∗ x = u ∗M . The solver then answers with the
solution F = (x = u ∗ a = u) and M = u 7→ w. Finally, the following instance of
SE-StoreEr is used to report an error, where C = skip;x := [v]; push back(v)
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and qrx = v 7→ a′ ∗ a′ 7→ w ∗ a 67→ ∗ x = u ∗ a = u:

[v 7→ u ∗ u 7→ w]C [ok : qrx ] lrx : [x] := 88

 [v 7→ u ∗ u 7→ w] C; lrx : [x] := 88 [er(lrx ) : qrx ]

Preliminary Results Our analysis handles the examples in this paper, modulo
function inlining. While our analysis shows how to derive a sound static analysis
from first principles, it does not yet fully exploit the theory, as it does not handle
function calls, and in particular summarization. Under-approximate triples pave
the way towards succinct summaries. However, this is a subtle problem, requiring
significant theoretical and empirical work out of the scope of this initial paper.

Pragmatically, we can make Pulse scale by skipping over procedure calls
instead of inlining them, in effect assuming that the call has no effect beyond
assigning fresh (non-deterministic) values to the return address and the parame-
ters passed by reference – note that such fresh values are treated optimistically
by Pulse as we do not know them to be invalid. In theory, this may cause false
positives and false negatives, but in practice we observed that such an analysis
reports very few issues. For instance, it reports no issues on OpenSSL 1.0.2d (with
8681 C functions) at the time of writing, and only 17 issues on our proprietary
C++ codebase of hundreds of thousands of procedures. As expected, the analysis
is very fast and scales well (6 seconds for OpenSSL, running on a Linux machine
with 24 cores). Moreover, 30 disjuncts suffice to detect all 17 issues (in comparison,
using 20 disjuncts misses 1 issue, while using 100 disjuncts detects no more issues
than using 30 disjuncts), and varying loop unrollings between 1–10 has no effect.

We also ran Pulse in production at Facebook and reported issues to developers
as they submit code changes, where bugs are more likely than in mature codebases.
Over the course of 4 months, Pulse reported 20 issues to developers, of which 15
were fixed. This deployment relies crucially on the begin-anywhere capability:
though the codebase in question has 10s of MLOC, analysing a code change starts
from the changed files and usually visits only a small fraction of the codebase.

Under-Approximation in Pulse Pulse achieves under-approximate reasoning
in several ways. First, Pulse uses the under-approximate Choice, Loop1 and Loop2

rules in Fig. 5 which prune paths by considering one execution branch (Choice) or
finite loop unrollings (Loop1 and Loop2). Second, Pulse does not use Alloc2, and
thus prunes further paths. Third, Pulse uses under-approximate models of certain
library procedures; e.g., the vector::push back() model assumes the internal
array is always deallocated. Finally, our bi-abduction implementation assumes
that memory locations are distinct unless known otherwise, thus leading to further
path pruning. These choices are all sound thanks to the under-approximate theory
of ISL; it is nevertheless possible to make different pragmatic choices.

Although our implementation does not do it, we can use ISL to derive strongest
posts for primitive statements, using a combination of their axioms and the Frame,
Disj and Exist rules. Given the logic fragment we use (which excludes inductive
predicates) and a programming language with Boolean conditions restricted to
a decidable fragment, there is likely a bounded decidability result obtained by
unrolling loops up to a given bound and then checking the strongest post on each
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path. However, the ability to under-approximate (by forgetting paths/disjuncts)
gives us the leeway to tune a deployment for optimizing the bugs/minute rate: in
one experiment, we found that running Pulse on a codebase with 100s kLOC and
a limit of 20 disjuncts was ∼3.1x user-time faster than running it with a limit of
50 disjuncts, and yet found 97% of the issues found in the 50-disjuncts case.

Remark 3. Note that although the underlying heaps in ISL grow monotonically,
the impact on the size of the manipulated states in our analysis is comparable
to that of the original bi-abductive analysis for SL [11]. This is in part thanks
to the compositionality afforded by ISL and its footprint property (Theorem 2),
especially when individual procedures analyzed are not too big. In particular, the
original bi-abduction work for SL already tracks the allocated memory; in ISL we
additionally track deallocated memory which is of the same order of magnitude.

6 Context, Related Work and Conclusions

Although the foundations of program verification have been mostly developed
with correctness in mind, industrial uses of symbolic reasoning often derive value
from their deployment as bug catchers rather than provers of bug absence. There is
a fundamental tension in correctness-based techniques, most thoroughly explored
in the model checking field, between compact representations versus strength
and utility of counter-examples. Abstraction techniques are typically used to
increase compactness. This has the undesired side-effect that counter-examples
become “abstract”: they may be infeasible, in that they may not actually witness
a concrete execution that violates a given property. Using proofs of bugs, this
paper aims to provide a symbolic mechanism to express the definite existence
of a concrete counter-example, without committing to a particular one, while
simultaneously enabling sound, compositional, local reasoning. Our working
hypothesis is that bugs are a fundamental enough phenomenon to warrant a
fundamental compositional theory for reasoning positively about their existence,
rather than only being about failed proofs. We hope that future work will explore
the practical ramifications of these foundational ideas more thoroughly.

Amongst static bug-catching techniques, there is a dichotomy between the
highly scalable, compositional static tools such as Coverity [5], Facebook Infer [18]
and those deployed at Google [42], which suffer from false positives as well as
negatives, and the under-approximating global bug hunters such as fuzzers [23]
and symbolic executors [9], which suffer from scalability limitations but not
false positives (at least, ideally). In a recent survey, Godefroid remarks “How
to engineer exhaustive symbolic testing (that is, a form of verification) in a
cost-effective manner is still an open problem for large applications.” [23]. The
ability to apply compositional analyses incrementally to large codebases has led
to considerable impact that is complementary to that of the global analyses.
But, compositional techniques can have less precision compared to global ones:
examining all call sites of a procedure can naturally lead to more precise results.

Our illustrative analysis, Pulse, starts from the scalable end of the spectrum
and moves towards the under-approximate end. An equally valid research direction



Local Reasoning About the Presence of Bugs 21

would be to start from existing under-approximate analyses and make them more
scalable and with lower start-up-cost. There has indeed been valuable research
in this direction. For example, SMART [22] tries to make symbolic execution
more scalable by using summaries as in inter-procedural static analysis, and UC-
KLEE [39] allows symbolic execution to begin anywhere, and thus does not need a
complete program. UC-KLEE uses a “lazy initialization” mechanism to synthesize
assumptions about data structures; this is not unlike the bi-abductive approach
here and in [10]. An interesting research question is whether this similarity
can be made rigorous. There are many papers on marrying under- and over-
approximation e.g., [1], but they often lack the scalability that is crucial to the
impact of modular bug catchers. In general, there is a large unexplored territory,
relevant to Godefroid’s open problem stated above, between the existing modular
but not-quite-under-approximate bug catchers such as Infer and Coverity, and
the existing global and under-approximate tools such as KLEE [8], CBMC [12]
and DART [24]. This paper provides not a solution, but a step in the exploration.

Gillian [20] is a platform for developing symbolic analysis tools using a
symbolic execution engine based on separation logic. Gillian has C and JavaScript
instantiations for precise reasoning about a finite unwinding of a program, similar
to symbolic bounded model checking. Gillian’s execution engine is currently exact
for primitive commands (it is both over- and under-approximate); however, it
uses over-approximate bi-abduction for function calls, and is thus open to false
positives (Petar Maksimović, personal communication). We believe Gillian can
be modified to embrace under-approximation more strongly, serving as a general
engine for proving ISL specifications. Aiming for under-approximate results rather
than exact ones gives additional flexibility to the analysis designer, just as aiming
for over-approximate rather than exact results does for correctness tools.

Many assertion languages for heap reasoning have been developed, including
ones not based on SL (e.g., [46,3,27,31]). We do not claim that, compared to these
alternatives, the ISL assertion language in this paper is particularly advantageous
for reasoning along individual paths, or exhaustive (but bounded) reasoning about
complete programs. Rather, the key point is that our analysis solves abduction
and anti-abduction problems, which in turn facilitates its application to large
codebases. In particular, as our analysis synthesizes contextual heap assumptions
(using anti-abduction), it can begin anywhere in a codebase instead of starting
from main(). For example, it can start on a modified function that is part of
a larger program: this capability enables continuous deployment in codebases
with millions of LOC [34,18]. To our knowledge, the cited assertion languages
have only ever been applied in a whole-program fashion on small codebases (with
low thousands of LOC). We speculate that this is not because of the assertion
languages per se: if methods to solve analogues of abduction and anti-abduction
queries were developed, perhaps they too could be applied to large codebases.

It is natural to consider how the ideas of ISL extend to concurrency. The
RacerD analyzer [25] provided a static analysis for data races in concurrent pro-
grams; this analysis was provably under-approximate under certain assumptions.
RacerD was intuitively inspired by concurrent separation logic (CSL [6]), but
did not match the over-approximate CSL theory (just as Infer did not match
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SL). We speculate that RacerD and other concurrency analyses might be seen as
constructing proofs in a yet-to-be-defined incorrectness version of CSL, a logic
which would aim at finding bugs in concurrent programs via modular reasoning.

Our approach supports reasoning that is local not only in code, but also in
state (spatial locality). Spatially local symbolic heap update has led to advances
in scalability of global shape analyses of mutable data structures, where heap
predicates are modified in-place in a way reminiscent of operational in-place
update, and where transfer functions need not track global heap information [44].
Mutable data structures have been suggested as one area where classic symbolic
execution has scaling challenges, and SL has been employed with human-directed
proof on heap-intensive components to aid the overall scalability of symbolic
execution [37]. An interesting question is whether spatial locality in the analysis
can benefit scalability of fully automatic, global, under-approximate analyses.

We probed the semantic fundamentals underpinning local reasoning in §4,
including a footprint theorem (Theorem 2) that is independent of the logic. The
semantic principles are more deeply fundamental than the surface syntax of
the logic. Indeed, in the early days of work on SL, it was remarked that local
reasoning flows from locality properties of the semantics, and that separation
logic is but one convenient syntax to exploit these [45]. Since then, a number of
correctness logics with non-SL syntax have been proposed for local reasoning
(e.g., [33] and its references) that exploit the semantic locality of heap update,
and it stands to reason that the same will be possible for incorrectness logics.

Relating this paper to the timeline of SL for correctness, we have developed the
basic logic (like [36] but under-approximate) and a simple local intra-procedural
analysis (like [19] but under-approximate). We have not yet made the next steps
to relatively-scalable global analyses [44] or extremely-scalable inter-procedural,
compositional ones [11]. These future directions are challenging for theory and
especially practice, and are the subject of ongoing and future work.

Conclusions Long ago, Dijkstra (in)famously remarked that “testing can be
quite effective for showing the presence of bugs, but is hopelessly inadequate for
showing their absence” [17], and he advocated the use of logic for the latter. As
noted by others, many of the benefits of logic hold for both bug catching and
verification, particularly the ability to cover many states and paths succinctly,
even if not the alluring all. But there remains a frustrating division between testing
and verification, where e.g., distinct tools are used for each. With more research
on the fundamentals of symbolic bug catching and correctness, division may be
replaced by unified foundations and toolsets in the future. For under-approximate
reasoning in particular, we hope that bug catching eventually becomes more
modular, scalable, easier to deploy and with elegant foundations similar to those
of verification. This paper presents but one modest step towards that goal.
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A Null Pointer Dereference Bug in OpenSSL
(CVE-2014-0198)

NPD(b), local xb, xp in

xb := [b];{
assume(xb=null); setup write buffer(b)

}
+
{
assume(xb 6=null); skip

}
;

dispatch alert(b) + skip;
xp := [b]; lrp: [xp] := 666

Fig. 9. The NPD program from OpenSSL adapted to the ISL language

We consider a null-pointer-dereference bug in OpenSSL, adapted to our ISL
language as the NPD(b) program in Fig. 9. The NPD(b) program makes calls to
the setup write buffer(b) and dispatch alert(b) procedures, assumed to be
inlined within NPD(b), as before. For brevity, we omit the code of these two
procedures, and note that while setup write buffer(b) always ensures that the
buffer at b is allocated, dispatch alert(b) may accidentally deallocate the buffer
at b and set it to null, causing a null-pointer-dereference error later. We thus
assume the following specifications for these procedures:

[b 7→ e] setup write buffer(b) [ok : ∃l2. b 7→ l2 ∗ l2 7→ e] (NPD-Setup)

[b 7→ l2 ∗ l2 7→ e] dispatch alert(b) [ok : b 7→ null ∗ l2 67→ ] (NPD-Alert)

We can then prove the following error specifications for NPD(b):

[b 7→ null] NPD(b) [er(lrp) : ∃l2. b 7→ null ∗ l2 67→ ] (NPD-Er-1)

[b 7→ l2 ∗ l2 7→ e] NPD(b) [er(lrp) : b 7→ null ∗ l2 67→ ] (NPD-Er-2)

(NPD-Er-1) describes the case where the buffer at b is originally unallocated and
is subsequently allocated by setup write buffer(b), only to be deallocated by
dispatch alert(b) shortly after, causing a null-pointer-dereference error at lrp.
Analogously, (NPD-Er-2) describes the case where the buffer is initially allocated
and later deallocated by dispatch alert(b), causing an error at lrp.

The proofs of (NPD-Er-1) and (NPD-Er-2) are straightforward. A proof
sketch of (NPD-Er-1) is given in Fig. 10; the (NPD-Er-2) proof is analogous and
omitted.
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[b 7→ null]

local xb, xp in

xb := [b]; // (Load)

[ok :xb = null ∗ b 7→ null]

{ assume(xb=null); // (Assume)

[ok :xb=null ∗ b 7→ null]

setup write buffer(b); // (NPD-Setup)

[ok :xb=null ∗ ∃l2. b 7→ l2 ∗ l2 7→ null]

}+ {. . .}; // (Choice)

[ok :xb=null ∗ ∃l2. b 7→ l2 ∗ l2 7→ null]

[ok :b 7→ l2 ∗ l2 7→ null]

(dispatch alert(b); // (NPD-Alert)

[ok :b 7→ null ∗ l2 67→ ]

[ok :xb=null ∗ ∃l2. b 7→ null ∗ l2 67→ ] // (Exist)

+ . . . ); // (Choice)

[ok :xb=null ∗ ∃l2. b 7→ null ∗ l2 67→ ]

xp := [b]; // (Load)

[ok :xb=xp=null ∗ ∃l2. b 7→ null ∗ l2 67→ ]

lrp: [xp] := 666 // (StoreNull)

[er(lrp) : xb=xp=null ∗ ∃l2. b 7→ null ∗ l2 67→ ]

// (Local,Cons)

[er(lrp) : ∃l2. b 7→ null ∗ l2 67→ ]

Fig. 10. A proof sketch of NPD-Er-1
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B Soundness

Definition 1.

s1 ∼A s2
def⇐⇒ ∀x ∈ A. s1(x)=s2(x)

Proposition 1. For all assertions p and all s, s ′, h, if (s, h) ∈ p and s ∼fv(p) s ′,
then (s ′, h) ∈ p.
For all ε, C, x, v, (s1, h1) and (s2, h2), if ((s1, h1), (s2, h2)) ∈ JCK and x 6∈ fv(C),
then ((s1[x 7→ v], h1), (s2[x 7→ v], h2)) ∈ JCK.

Lemma 1. For all p,C, q, ε, if ` [p] C [ε :q] holds, then:

∀(sq, hq) ∈ q. ∀h. hq # h =⇒
∃(sp, hp) ∈ p. sp ∼mod(C) sq ∧

(
(sp, hp ] h), (sq, hq ] h)

)
∈ JCKε

where hq # h
def⇐⇒ dom(hq) ∩ dom(h)=∅ denotes that hq and h are compatible

in that their composition is defined.

Proof. We proceed by induction on the structure of incorrectness triples. In what
follows we write h0 to denote an empty heap (i.e., dom(h0) = ∅).

Case Skip

Pick an arbitrary σq=(s, hq) ∈ emp and an arbitrary h such that hq # h. It then
suffices to show that ((s, hq ] h), (s, hq ] h)) ∈ JskipKok , which follows from the
semantics of skip immediately.

Case Assign

Pick an arbitrary x, e, h and (sq, hq) ∈ q such that hq ] h. We then know hq=h0

and sq(x)=sq(e[x′/x]). Let sp=sq[x 7→ sq(x′)]. By definition we then know that
sp ∼mod(C) sq and (sp, hq) ∈ p. It then suffices to show that ((sp, hq ] h), (sq, hq ]
h)) ∈ Jx := eKok , which follows from the semantics of x := e immediately.

The proof of Havoc is analogous and omitted here.

Case Load

Pick an arbitrary x, y and (sq, hq) ∈ q. Pick an arbitrary h such that hq # h. We

then know there exist l, v such that sq(x)=sq(e[x′/x])=v, sq(y)=l and hq , [l 7→ v].

Let sp , sq[x 7→ sq(x
′)]. By definition we then know that sp ∼mod(C) sq and

(sp, hq) ∈ p. It then suffices to show ((sp, hq ]h), (sq, hq ]h)) ∈ Jx := [y]Kok , which
follows from the semantics of x := [y] immediately.

Case LoadEr

Pick an arbitrary x, y and (sq, hq) ∈ q. Pick an arbitrary h such that hq # h.

We then know there exist l such that sq(y)=l and hq , [l 7→ ⊥]. By defini-
tion we then know that sq ∼mod(C) sq and (sq, hq) ∈ p. It then suffices to show

((sq, hq ] h), (sq, hq ] h)) ∈ Jx := [y]Ker(l), which follows from the semantics of
x := [y] immediately.
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Case LoadNull

Pick an arbitrary x, y and (sq, hq) ∈ q. Pick an arbitrary h such that hq # h. We
then know hq=h0 and sq(y)=null. By definition we then know that sq ∼mod(C) sq
and (sq, hq) ∈ p. It then suffices to show ((sq, hq]h), (sq, hq]h)) ∈ Jx := [y]Ker(l),
which follows from the semantics of x := [y] immediately.

The proofs of the Store, StoreEr and StoreNull cases are analogous to
those of Load, LoadEr and LoadNull respectively, and are omitted here.

Case Alloc1

Pick an arbitrary x and (sq, hq) ∈ q. We then know there exists l and v ∈ Val

such that sq(x)=l and hq , [l 7→ v]. Pick an arbitrary h such that hq # h. Let

sp , sq[x 7→ sq(x
′)], hp=h0. By definition we then know that sp ∼mod(C) sq and

(sp, hp) ∈ p. Since hq # h and dom(hp) ⊆ dom(hq), from the definition of ] we
also know that hp # h. It then suffices to show that ((sp, hp ] h), (sq, hq ] h)) ∈
Jx := alloc()Kok , which follows from the semantics of x := alloc().

Case Alloc2

Pick an arbitrary x, y and (sq, hq) ∈ q. We then know there exists l and v ∈ Val

such that sq(x)=sq(y)=l and hq , [l 7→ v]. Pick an arbitrary h such that

hq # h. Let sp , sq[x 7→ sq(x
′)], hp=[l 7→ ⊥]. By definition we then know

that sp ∼mod(C) sq and (sp, hp) ∈ p. Since hq # h and dom(hp)=dom(hq), from

the definition of ] we also know that hp # h. It then suffices to show that
((sp, hp ] h), (sq, hq ] h)) ∈ Jx := alloc()Kok , which follows from the semantics
of x := alloc().

Case Free

Pick an arbitrary x and (sq, hq) ∈ q. We then know there exists l such that sq(x)=l

and hq , [l 7→ ⊥]. Pick an arbitrary h such that hq # h. Let hp=[l 7→ sq(e)]. By
definition we then know that sq ∼mod(C) sq and (sq, hp) ∈ p. Since hq # h and

dom(hp)=dom(hq), from the definition of ] we also know that hp # h. It then
suffices to show that ((sq, hp ] h), (sq, hq ] h)) ∈ Jfree(x)Kok , which follows from
the semantics of free(x) immediately.

Case FreeEr

Pick an arbitrary x and (sq, hq) ∈ q. We then know there exists l such that sq(x)=l

and hq , [l 7→ ⊥]. Pick an arbitrary h such that hq # h. By definition we then
know that sq ∼mod(C) sq. It then suffices to show that ((sq, hq ] h), (sq, hq ] h)) ∈
Jfree(x)Ker(l), which follows from the semantics of free(x) immediately.

Case FreeNull

Pick an arbitrary x and (sq, hq) ∈ q. We then know hq=h0 and sq(x)=null. Pick
an arbitrary h such that hq # h. By definition we then know that sq ∼mod(C) sq.

It then suffices to show that ((sq, hq ] h), (sq, hq ] h)) ∈ Jfree(x)Ker(l), which
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follows from the semantics of free(x) immediately.

Case Error

Pick an arbitrary (sq, hq) ∈ q. We then know that hq , h0. Pick an arbi-
trary h such that hq # h. As (sq, hq) ∈ q, it then suffices to show that
((sq, hq ] h), (sq, hq ] h)) ∈ JerrorKer(l), which follows from the semantics of
error immediately.

Case Assume

Pick an arbitrary (sq, hq) ∈ q. We then know that sq(B) 6= 0. Pick an ar-
bitrary h such that hq # h. Since q=p ∧ B and (sq, hq) ∈ q, we also have
(sq, hq) ∈ p. By definition we know that sq ∼mod(C) sq. It thus suffices to show

that ((sq, hq]h), (sq, hq]h)) ∈ Jassume(B)Kok , which follows from the semantics
of assume(B) immediately.

Case Local

Pick an arbitrary x, h and (sq, hq) ∈ ∃x. q such that hq # h. From the semantics
of assertions we then know that there exists v and s ′q such that s ′q = sq[x 7→ v]
and (s ′q, hq) ∈ q. Since from the premise of Local we have [p] C [ε :q], from
the inductive hypothesis we know there exist s ′p, hp such that s ′p ∼mod(C) s ′q,

(s ′p, hp) ∈ p and ((s ′p, hp ] h), (s ′q, hq ] h)) ∈ JCKε. Let sp = s ′p[x 7→ sq(x)]. Note
that since sp[x 7→ s ′p(x)] = s ′p and (s ′p, hp) ∈ p, from the semantics of asser-
tions we have (sp, hp) ∈ ∃x. p. On the other hand, since sp(x) = sq(x) and
((s ′p, hp ] h), (s ′q, hq ] h)) ∈ JCKε, from the definitions of J.K, sp, s ′p, sq and s ′q
we also have ((sp, hp ] h), (sq, hq ] h)) ∈ Jlocal x in CKε. Moreover, since
s ′p ∼mod(C) s ′q and sp = s ′p[x 7→ sq(x)] and thus sq(x) = sp(x), we also have

sp ∼mod(local x in C) sq, as required.

Case Exist

Pick an arbitrary x, h and (sq, hq) ∈ ∃x. q such that hq # h. From the semantics
of assertions we then know that there exists v and s ′q such that s ′q = sq[x 7→ v]
and (s ′q, hq) ∈ q. Since from the premise of Exist we have [p] C [ε :q], from
the inductive hypothesis we know there exist s ′p, hp such that s ′p ∼mod(C) s ′q,

(s ′p, hp) ∈ p and ((s ′p, hp ] h), (s ′q, hq ] h)) ∈ JCKε. Let sp = s ′p[x 7→ sq(x)]. Note
that since sp[x 7→ s ′p(x)] = s ′p and (s ′p, hp) ∈ p, from the semantics of asser-
tions we have (sp, hp) ∈ ∃x. p. On the other hand, since sp(x) = sq(x) and
((s ′p, hp ] h), (s ′q, hq ] h)) ∈ JCKε, and since x 6∈ fv(C), from Proposition 1 and
the definitions of sp, s ′p, sq and s ′q we also have ((sp, hp ] h), (sq, hq ] h)) ∈ JCKε.
Moreover, since s ′p ∼mod(C) s ′q and sp = s ′p[x 7→ sq(x)] and thus sq(x) = sp(x),

from the definitions of sp, s ′p, sq and s ′q we also have sp ∼mod(C) sq, as required.

Case Seq1

Pick an arbitrary (sq, hq) ∈ q and h such that hq # h. Since from the premise of
Seq1 we have [p] C [ε :q] with ε 6= ok , from the inductive hypothesis we know there
exist sp, hp such that sp ∼mod(C1)

sq, (sp, hp) ∈ p and ((sp, hp ] h), (sq, hq ] h)) ∈
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JC1Kε. As such, since mod(C1) ⊆ mod(C1;C2), we know sp ∼mod(C1;C2)
sq,

(sp, hp) ∈ p and from the semantics of C1;C2 we have ((sp, hp ] h), (sq, hq ] h)) ∈
JC1;C2Kε, as required.

Case Seq2

Pick arbitrary (sq, hq) ∈ q and h such that hq # h. As from the second
premise of Seq2 we have [r] C2 [ε :q] and mod(C2) ⊆ mod(C1;C2), from the
inductive hypothesis we know there exist sr, hr such that sr ∼mod(C1;C2)

sq,

(sr, hr) ∈ r and ((sr, hr ] h), (sq, hq ] h)) ∈ JC2Kε. Moreover, as from the
first premise we have [p] C1 [ok :r] and mod(C1) ⊆ mod(C1;C2), from the
inductive hypothesis we know there exist sp, hp such that sp ∼mod(C1;C2)

sr,

(sp, hp) ∈ p and ((sp, hp]h), (sr, hr]h)) ∈ JC1Kok . As such, since sp ∼mod(C1;C2)
sr,

sr ∼mod(C1;C2)
sq we know sp ∼mod(C1;C2)

sq, (sp, hp) ∈ p and from the semantics

of C1;C2 we have ((sp, hp ] h), (sq, hq ] h)) ∈ JC1;C2Kε, as required.

Case Choice

Pick arbitrary (sq, hq) ∈ q and h such that hq # h. From the premise of Choice

we know there exists i ∈ {1, 2} such that [p] Ci [ε :q]. As such, from the inductive
hypothesis we know there exist sp, hp such that sp ∼mod(Ci)

sq, (sp, hp) ∈ p and

((sp, hp ] h), (sq, hq ] h)) ∈ JCiKε. As such, since mod(Ci) ⊆ mod(C1 + C2), we
know sp ∼mod(C1+C2)

sq, (sp, hp) ∈ p and from the semantics of C1 + C2 we have

((sp, hp ] h), (sq, hq ] h)) ∈ JC1 + C2Kε, as required.

Case Loop1

Pick an arbitrary (sq, hq) ∈ q and an arbitrary h such that hq # h. It then suffices
to show that ((sq, hq ]h), (sq, hq ]h)) ∈ JC?Kok , which follows from the semantics
of C? immediately.

Case Loop2

Pick arbitrary (sq, hq) ∈ q and h such that hq # h. From the premise of Loop2

we have [p] C?;C [ε :q] and thus from the inductive hypothesis we know there
exists sp, hp such that sp ∼mod(C;C?)

sq, (sp, hp) ∈ p and ((sp, hp ] h), (sq, hq ]
h)) ∈ JC?;CKε. Moreover, by definition we have mod(C?;C)=mod(C?). On the
other hand, it is straightforward to show that JC?;CK =

⋃
i∈N+

JCiK and thus

JC?;CK ⊆ JC?K. Consequently, we know there exists sp, hp such that sp ∼mod(C?)
sq,

(sp, hp) ∈ p and ((sp, hp ] h), (sq, hq ] h)) ∈ JC?Kε, as required.

Case Cons

Pick arbitrary (sq, hq) ∈ q and h such that hq # h. As form the premise of
Cons we have q ⇒ q′, we also know that (sq, hq) ∈ q′. On the other hand,
from the premise of Cons we have [p′] C [ε :q′] and thus from the inductive
hypothesis we know there exist sp, hp such that sp ∼mod(C) sq, (sp, hp) ∈ p′ and

((sp, hp ] h), (sq, hq ] h)) ∈ JCKε. Moreover, as p′ ⇒ p and (sp, hp) ∈ p′ we also
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have (sp, hp) ∈ p. That is, we know there exists sp, hp such that sp ∼mod(C) sq,

(sp, hp) ∈ p and ((sp, hp ] h), (sq, hq ] h)) ∈ JCKε, as required.

Case Frame

Pick arbitrary (s2, h2) ∈ q ∗ r and h such that h2 # h. From the definition of ∗ we
then know there exists hq, hr such that (s2, hq) ∈ q, (s2, hr) ∈ r and h2 , hq ] hr.
From the definition of # and ] we then also have hq # hr ] h. On the other
hand, from the premise of Frame we have [p] C [ε :q] and thus from the inductive
hypothesis we know there exists s1, hp such that s1 ∼mod(C) s2, (s1, hp) ∈ p and

((s1, hp ] hr ] h), (sq, hq ] hr ] h)) ∈ JCKε. Moreover, since s1 ∼mod(C) s2 and as

from the premise of Frame we have mod(C) ∩ fv(r)=∅, we also have s1 ∼fv(r) s2.
Consequently, since (s2, hr) ∈ r, from Proposition 1 we have (s1, hr) ∈ r. As
such from the definition of ∗ we have (s1, hp ] hr) ∈ p ∗ r. That is, we know
there exists s1 and h1=hp ] hr such that s1 ∼mod(C) s2, (s1, h1) ∈ p ∗ r and

((s1, h1 ] h), (sq, h2 ] h)) ∈ JCKε, as required.

Case Disj

Pick arbitrary (sq, hq) ∈ q1 ∨ q2 and h such that hq # h. We then know there
exists i ∈ {1, 2} such that (sq, hq) ∈ qi. From the premise of Disj we have [pi] C
[ε :qi] and thus from the inductive hypothesis we know there exists sp, hp such
that sp ∼mod(C) sq, (sp, hp) ∈ pi and ((sp, hp ] h), (sq, hq ] h)) ∈ JCKε. Moreover,

since pi ⊆ p1 ∨ p2 and (sp, hp) ∈ pi, we also have (sp, hp) ∈ p1 ∨ p2. That
is, we know there exists sp, hp such that sp ∼mod(C) sq, (sp, hp) ∈ p1 ∨ p2 and

((sp, hp ] h), (sq, hq ] h)) ∈ JCKε, as required.

Theorem 4 (Soundness). For all p,C, q, ε, if ` [p] C [ε :q] holds, then |= [p]
C [ε :q] also holds.

Proof. Pick arbitrary p,C, q, ε such that ` [p] C [ε :q] holds. Pick an arbi-
trary (sq, hq) ∈ q. It then suffices to show there exists (sp, hp) ∈ p such that
((sp, hp), (sq, hq)) ∈ JCKε.

From the definition of ] and # we then know that hq # h0. As such, from
Lemma 1 we know there exists (sp, hp) ∈ p such that ((sp, hp ] h0), (sq, hq ] h0)) ∈
JCKε. That is, there exists (sp, hp) ∈ p such that ((sp, hp), (sq, hq)) ∈ JCKε, as
required.
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foot (.) : Comm→ Exit→ P(State× State)

foot (skip) ε ,
{

((s, h0), (s, h0)) s ∈ Store
}

foot (x := e) ok ,
{

((s, h0), (s[x 7→ s(e)], h0)) s ∈ Store
}

foot (x := e) er(−) , ∅

foot (x := *) ok ,
{

((s, h0), (s[x 7→ v], h0)) v ∈ Val
}

foot (x := *) er(−) , ∅

foot (assume(B)) ok ,
{

(σ, σ) σ=(s, h0) ∧ s(B) 6=0
}

foot (assume(B)) er(−) , ∅

foot (local x in C) ε ,

{
((s[x 7→ v], h), (s ′[x 7→ v], h ′))

((s, h), (s ′, h ′)) ∈ foot (C) ε
∧v ∈ Val

}
foot (l: error) ok , ∅

foot (l: error) er(l′) ,
{

((σ, σ) σ=(s, h0) ∧ l=l′
}

foot (C1;C2) ε ,
{

(σ, σ′) ε 6= ok ∧ (σ, σ′) ∈ foot (C1) ε
}

∪
{

(σ1 • σ, σ2 • σ′)
∃σc. (σ1, σ

′ • σc) ∈ foot (C1) ok
∧ (σc • σ, σ2) ∈ foot (C2) ε

}
foot (C1 + C2) ε , foot (C1) ε ∪ foot (C2) ε

foot (C?) ε ,
{(

(s, h0), (s, h0)
)
ε=ok

}
∪
⋃

i∈N+

foot
(
Ci
)
ε

foot (x := alloc()) ok ,
{(

(s, h), (s[x 7→ l], [l 7→ v])
)
v ∈ Val ∧ (h=h0 ∨ h=[l 7→ ⊥]

}
foot (x := alloc()) er(−) , ∅

foot (l: free(x)) ok ,
{(

(s, [l 7→ v]), (s, [l 7→ ⊥])
)

s(x)=l ∧ v ∈ Val
}

foot (l: free(x)) er(l′) ,
{(

(s, [l 7→ ⊥]), (s, [l 7→ ⊥])
)

l=l′∧ s(x)=l
}

∪
{(

(s, h0), (s, h0)
)

l=l′∧ s(x)=null
}

foot (l:x := [y]) ok ,
{(

(s, [l 7→ v]), (s[x 7→ v], [l 7→ v])
)

s(y)=l
}

foot (l:x := [y]) er(l′) ,
{(

(s, [l 7→ ⊥]), (s, [l 7→ ⊥])
)

l=l′∧ s(y)=l
}

∪
{(

(s, h0), (s, h0)
)

l=l′∧ s(y)=null
}

foot (l: [x] := y) ok ,
{(

(s, [l 7→ v]), (s, [l 7→ s(y)])
)

s(x)=l ∧ v ∈ Val
}

foot (l: [x] := y) er(l′) ,
{(

(s, [l 7→ ⊥]), (s, [l 7→ ⊥])
)

l=l′∧ s(x)=l
}

∪
{(

(s, h0), (s, h0)
)

l=l′∧ s(x)=null
}

Fig. 11. The local ISL footprints where h0 denotes an empty heap (dom(h0)=∅)

C Footprints

ISL Footprints The definition of ISL footprints is given in Fig. 11. Note that
the definitions of footSL(C) and foot (C) ok agree for all C with the exception of
C=x := alloc() and C=free(x). In the case of C=x := alloc() this is because
foot (C) additionally allows allocation from a singleton heap with a deallocated
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location. In the case of C=free(x) this is because foot (C) simply mutates the
location at x to record ⊥ and does not remove it from the heap.

It is straightforward to demonstrate that the footprint of a program is included
in its semantics, as captured by the following lemma.

Lemma 2. For all C ∈ Comm and ε ∈ Exit: foot (C) ε ⊆ JCKε.

Proof. Follows by straightforward induction on the structure of C.

We next proceed with several auxiliary lemmas and then prove our footprint
theorem (Theorem 5).

Lemma 3 (Cross-split property). For all h1, h2, h3, h4 ∈ Heap:

h1 ] h2 = h3 ] h4 ⇒ ∃h13, h14, h23, h24. h1=h13 ] h14 ∧ h2=h23 ] h24

∧ h3=h13 ] h23 ∧ h4=h14 ] h24

Proof. Follows from the definition of ] on heaps.

Lemma 4 (Heap Monotonicity). For all s1, s2, h, h1, h2,C, ε, if ((s1, h1), (s2, h2)) ∈
JCKε and h2 # h, then ((s1, h1 ] h), (s2, h2 ] h)) ∈ JCKε.

Proof. Follows by straightforward induction on the structure of C.

Corollary 1. For all s1, s2, h, h1, h2,C, ε, if ((s1, h1), (s2, h2)) ∈ foot (C) ε and
h2 # h, then ((s1, h1 ] h), (s2, h2 ] h)) ∈ JCKε.

Proof. Follows immediately from Lemma 2 and Lemma 4.

Theorem 5. For all C ∈ Comm and ε ∈ Exit: JCKε = frame (foot (C) ε).

Proof. By induction on the structure of C.

Case C = skip

There are two cases to consider: 1) ε=er(l′) for some l′; or 2) ε=ok . In case (1) by
definition we have JCKε=∅=frame (foot (C) ε), as required. In case (2), from the
definitions of foot (.), frame (.) and J.K we have JCKε =

{
(σ, σ) σ ∈ State

}
={(

(s, h0 ] h), (s, h0 ] h)
)

h ∈ Heap
}

=frame (foot (C) ε), as required.

Case C = x := e
There are two cases to consider: 1) ε=er(l′) for some l′; or 2) ε=ok . In case (1)
by definition we have JCKε=∅=frame (foot (C) ε), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCKε =
{

((s, h), (s[x 7→ s(e)], h)) (s, h) ∈ State
}

=
{

((s, h0 ] h), (s[x 7→ s(e)], h0 ] h)) h ∈ Heap
}

= frame (foot (C) ε)

Case C = x := *

The proof of this case is analogous to that of the previous case and is omitted.
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Case C = l:x := [y]
There are three cases to consider: 1) ε=ok ; or 2) ε=er(l); or 3) ε=er(l′) for some
l′ 6= l. In case (1) from the definitions of foot (.), frame (.) and J.K we have:

JCKε =
{

((s, h), (s[x 7→ v], h)) h(s(y))=v ∈ Val
}

=
{

((s, [l 7→ v] ] h), (s[x 7→ v], [l 7→ v] ] h)) v∈Val ∧ s(y)=l ∧ h∈Heap
}

= frame (foot (C) ε)

Similarly, in case (2) we have:

JCKε =
{

((s, h), (s, h)) h(s(y))=⊥
}

=
{

((s, [l 7→ ⊥] ] h), (s, [l 7→ ⊥] ] h)) s(y)=l ∧ h∈Heap
}

= frame (foot (C) ε)

Finally, in case (3) we have JCKε=∅=frame (foot (C) ε), as required.

Case C = l: [x] := y
The proof of this case is analogous to that of the previous case and is omitted.

Case C = x := alloc()

There are two cases to consider: 1) ε=er(l′) for some l′; or 2) ε=ok . In case (1)
by definition we have JCKε=∅=frame (foot (C) ε), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCKε =
{

((s, h), (s[x 7→ l], h[l 7→ v])) v ∈ Val ∧ (l 6∈ dom(h) ∨ h(l)=⊥)
}

=

{
((s, h ] h ′), (s[x 7→ l], [l 7→ v] ] h ′))

v ∈ Val ∧ (h=h0 ∨ h=[l 7→ ⊥])
∧ h ′ ∈ Heap

}
= frame (foot (C) ε)

Case C = free(x)
There are three cases to consider: 1) ε=ok ; or 2) ε=er(l); or 3) ε=er(l′) for some
l′ 6= l. In case (1) from the definitions of foot (.), frame (.) and J.K we have:

JCKε =
{

((s, h), (s, h[l 7→ ⊥])) s(x)=l ∧ h(l) ∈ Val
}

=
{

((s, [l 7→ v] ] h), (s, [l 7→ ⊥] ] h)) s(x)=l ∧ v∈Val ∧ h∈Heap
}

= frame (foot (C) ε)

Similarly, in case (2) we have:

JCKε =
{

((s, h), (s, h)) s(x)=l ∧ h(l)=⊥
}

=
{

((s, [l 7→ ⊥] ] h), (s, [l 7→ ⊥] ] h)) s(x)=l ∧ h∈Heap
}

= frame (foot (C) ε)

Finally, in case (3) we have JCKε=∅=frame (foot (C) ε), as required.

Case C = l: error
There are three cases to consider: 1) ε=ok ; or 2) ε=er(l′) for l′ 6= l; or 3)
ε=er(l). In (1) and (2) by definition we have JCKε=∅=frame (foot (C) ε), as
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required. In (3) from the definitions of foot (.), frame (.) and J.K we have JCKε ={
(σ, σ) σ ∈ State

}
=
{(

(s, h0 ] h), (s, h0 ] h)
)

h ∈ Heap
}

=frame (foot (C) ε),
as required.

Case C = assume(B)
There are two cases to consider: 1) ε=er(l′) for some l′; or 2) ε=ok . In case (1)
by definition we have JCKε=∅=frame (foot (C) ε), as required. In case (2) from
the definitions of foot (.), frame (.) and J.K we have:

JCKε =
{

((s, h), (s, h)) s(B) 6= 0
}

=
{

((s, h0 ] h), (s, h0 ] h)) s(B) 6= 0 ∧ h ∈ Heap
}

= frame (foot (C) ε)

Case C = local x in C′

∀ε. JC′Kε=frame (foot (C′) ε) (I.H)

From the definitions of foot (.), frame (.), J.K and (I.H) we have:

JCKε ,
{

((s[x 7→ v], h), (s ′[x 7→ v], h ′))
((s, h), (s ′, h ′)) ∈ JC′Kε
∧ v ∈ Val

}
(I.H)
=

{
((s[x 7→ v], h), (s ′[x 7→ v], h ′))

((s, h), (s ′, h ′)) ∈ frame (foot (C′) ε)
∧ v ∈ Val

}
= frame

({
((s[x 7→ v], h), (s ′[x 7→ v], h ′))

((s, h), (s ′, h ′)) ∈ foot (C′) ε
∧ v ∈ Val

})
= frame (foot (C) ε)

Case C = C1;C2

∀ε. JC1Kε=frame (foot (C1) ε) ∧ JC2Kε=frame (foot (C2) ε) (I.H)

In what follows we show JCKε ⊆ frame (foot (C) ε) and frame (foot (C) ε) ⊆
JCKε, thus establishing JCKε = frame (foot (C) ε), as required.

For the first part, from the definitions of foot (.), frame (.), J.K, Lemma 3
and (I.H) we have:

JCKε ,
{

(σ, σ′)
ε 6= ok ∧ (σ, σ′) ∈ JC1Kε
∨ ∃σ′′. (σ, σ′′) ∈ JC1Kok ∧ (σ′′, σ′) ∈ JC2Kε

}
=
{

(σ, σ′) ε 6= ok ∧ (σ, σ′) ∈ JC1Kε
}

∪
{

(σ, σ′) ∃σ′′. (σ, σ′′) ∈ JC1Kok ∧ (σ′′, σ′) ∈ JC2Kε
}

I.H
=
{

(σ, σ′) ε 6= ok ∧ (σ, σ′) ∈ frame (foot (C1) ε)
}

∪
{

(σ, σ′)
∃σ′′. (σ, σ′′) ∈ frame (foot (C1) ok)

∧ (σ′′, σ′) ∈ frame (foot (C2) ε)

}
= frame

({
(σ1, σ2) ε 6= ok ∧ (σ1, σ2) ∈ foot (C1) ε

})
∪

((s1, h1 ] h), (s2, h2 ] h ′))
∃s ′′, h3, h4. ((s1, h1), (s ′, h3)) ∈ foot (C1) ok

∧ ((s ′, h4), (s2, h2)) ∈ foot (C2) ε
∧ h3 ] h=h4 ] h ′





38 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

(Lemma 3) ⊆ frame
({

(σ1, σ2) ε 6= ok ∧ (σ1, σ2) ∈ foot (C1) ε
})

∪

((s1, h1 ] h), (s2, h2 ] h ′))

∃s ′′, h3, h4. ((s1, h1), (s ′, h3)) ∈ foot (C1) ok
∧ ((s ′, h4), (s2, h2)) ∈ foot (C2) ε

∧ ∃h34, h3b, ha4, hab.
h3=h34 ] h3b ∧ h=ha4 ] hab

∧ h4=h34 ] ha4 ∧ h ′=h3b ] hab


= frame

({
(σ1, σ2) ε 6= ok ∧ (σ1, σ2) ∈ foot (C1) ε

})
∪
{

((s1, h1 ] ha4 ] hab), (s2, h2 ] h3b ] hab)
∃h34. ((s1, h1), (s ′, h34 ] h3b)) ∈ foot (C1) ok

∧ ((s ′, h34 ] ha4), (s2, h2)) ∈ foot (C2) ε

}
= frame

({
(σ1, σ2) ε 6= ok ∧ (σ1, σ2) ∈ foot (C1) ε

})
∪ frame

({
((s1, h1 ] ha4), (s2, h2 ] h3b))

∃h34. ((s1, h1), (s ′, h34 ] h3b)) ∈ foot (C1) ok
∧ ((s ′, h34 ] ha4), (s2, h2)) ∈ foot (C2) ε

})

= frame

{(σ1, σ2) ε 6= ok ∧ (σ1, σ2) ∈ foot (C1) ε
}

∪
{

(σ1 • σa4, σ2 • σ3b)
∃σ34. (σ1, σ34 • σ3b) ∈ foot (C1) ok

∧ (σ34 • σa4, σ2) ∈ foot (C2) ε

}
= frame (foot (C1;C2) ε)

= frame (foot (C) ε)

For the second part, from the definitions of foot (.), frame (.), J.K, Lemma 4
and (I.H) we have:

frame (foot (C) ε) =
{

((s1, h1 ] hr), (s2, h2 ] hr)) ((s1, h1), (s2, h2)) ∈ foot (C) ε ∧ h ∈ Heap
}

=
{

((s1, h1 ] hr), (s2, h2 ] hr)) ε 6= ok ∧ ((s1, h1), (s2, h2)) ∈ foot (C1) ε
}

∪
{

((s1, h1 ] h ] hr), (s2, h2 ] h ′ ] hr))
∃hc, s3. ((s1, h1), (s3, h

′ ] hc)) ∈ foot (C1) ok
∧ ((s3, hc ] h), (s2, h2)) ∈ foot (C2) ε

}
(Corollary 1) ⊆

{
((s1, h1 ] hr), (s2, h2 ] hr)) ε 6= ok ∧ ((s1, h1 ] hr), (s2, h2 ] hr)) ∈ JC1Kε

}
∪

((s1, h1 ] h ] hr), (s2, h2 ] h ′ ] hr))
∃hc, s3.
(((s1, h1 ] h ] hr), (s3, h

′ ] hc ] h ] hr)) ∈ JC1Kok
∧ ((s3, hc ] h ] h ′ ] hr), (s2, h2 ] h ′ ] hr)) ∈ JC2Kε


=
{

(σ, σ′) ε 6= ok ∧ (σ, σ′) ∈ JC1Kε
}

∪
{

(σ, σ′) ∃σ′′. (σ, σ′′) ∈ JC1Kok ∧ (σ′′, σ′) ∈ JC2Kε
}

=

{
(σ, σ′)

ε 6= ok ∧ (σ, σ′) ∈ JC1Kε
∨ ∃σ′′. (σ, σ′′) ∈ JC1Kok ∧ (σ′′, σ′) ∈ JC2Kε

}
= JCKε

Case C = C1 + C2

∀ε. JC1Kε=frame (foot (C1) ε) ∧ JC2Kε=frame (foot (C2) ε) (I.H)

From the definitions of foot (.), frame (.), J.K and (I.H) we have:

JCKε = JC1Kε ∪ JC2Kε
= frame (foot (C1) ε) ∪ frame (foot (C2) ε)
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= frame (foot (C1 + C2) ε)

= frame (foot (C) ε)

Case C = C?
r

We first demonstrate that:

∀i ∈ N. JCi
rKε=frame

(
foot

(
Ci

r

)
ε
)

(1)

We proceed by induction on i.
Base case i = 0
It suffices to show that JskipKε=frame (foot (skip) ε), which follows from the
proof of case skip above.

Inductive case i = n+1
From the definition of Cn+1

r we then have JCn+1
r Kε = JCr;Cn

r Kε. On the other
hand, from the proof of the sequential case composition we have JCr;Cn

r Kε =
frame (foot (Cr;Cn

r ) ε), and thus we have JCn+1
r Kε = frame (foot (Cr;Cn

r ) ε).
Finally, from definition of Cn+1

r we have Cr;Cn
r = Cn+1

r and thus we have
JCn+1

r Kε = frame
(
foot

(
Cn+1

r

)
ε
)
, as required.

From the definitions of foot (.), frame (.), J.K and (1) we have:

JCKε =
⋃
i∈N

JCi
rKε

(1)
=
⋃
i∈N

frame
(
foot

(
Ci

r

)
ε
)

= frame

(⋃
i∈N

foot
(
Ci

r

)
ε

)
= frame (foot (C) ε)
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D Symbolic Execution Rules

We now list all rules for the analysis described in §5.

SE-Seq1

[p]C [ok : q] Ci  [p1] C;C1 [ε1 :q1]
[p1]C;C1 [ε1 :q1] C2  [p2] C;C1;C2 [ε2 :q2]

[p]C [ok : q] C1;C2  [p2] C;C1;C2 [ε2 :q2]

SE-Seq2

[p]C1 [er(l) : q] C2  [p] C1;C2 [er(l) : q]
SE-Local

[p[x′/x]]C [ok : q[x′/x]] C′  [p′] C;C′ [ε :q′]
x′ 6∈ fv(p, q,C,C′) z 6∈ fv(p′, q′,C,C′)

[p]C [ok : q] local x in C′  [p′[z/x′]] C; local x in C′ [ε :q′[z/x′]]
SE-Loop

[p]C′ [ok : q] skip + C + (C;C) + · · ·+ CNloops

 [p′] C′; skip + C + (C;C) + · · ·+ CNloops [ε :q′]

[p]C′ [ok : q] C?  [p′] C′;C? [ε :q′]
SE-Choice

[p]C [ok : q] Ci  [pi] C;Ci [εi :qi]

[p]C [ok : q] C1 + C2  [pi] C;C1 + C2 [εi :qi]
SE-Skip

[p]C [ok : q] skip [p]C; skip [ok : q]
SE-Error

[p]C [ok : q] l: error [p] C; l: error [er(l) : q]
SE-Assign

x′ /∈ fv(p,C, x, e, q)
[p]C [ok : q] x := e [p]C;x := e [ok : x = e[x′/x] ∗ q[x′/x]]

SE-Havoc
x′ /∈ fv(p,C, x, q)

[p]C [ok : q] x := * [p]C;x := * [ok : q[x′/x]]
SE-Assume

[p]C [ok : q] assume(B) [p]C; assume(B) [ok : B ∗ q]
Note that SE-Assume does not require B ∗ q to be explicitly satisfiable. This

is because we implicitly stop the symbolic execution any time either the inferred
presumption or current state becomes inconsistent due to the application of any
rule.

SE-Alloc1
x′, v /∈ fv(p,C, x, q)

[p]C [ok : q] x := alloc() [p]C;x := alloc() [ok : q[x′/x] ∗ x 7→ v]

There is no rule corresponding to Alloc2 in our analysis. This is not a fundamental
choice but rather a practical one, as including such a rule would introduce
branching on all known invalidated addresses at each alloc() call site, which
can blow up the exploration space. To put it another way, we could easily include



Local Reasoning About the Presence of Bugs 41

an analogue of SE-Alloc1 for re-using known-invalidated addresses; the ability
not to do so is granted to us by the under-approximate setting.

SE-Load
y 7→ e ∗ F ` q ∗M

mod(C) ∩ fv(M) = ∅ x /∈ fv(F ) x′ /∈ fv(p,C, x, y, q)
[p]C [ok : q] x := [y] [p ∗M ]C;x := [y] [ok : y 7→ e[x′/x] ∗ x = e[x′/x] ∗ F ]

SE-LoadEr
q ` y 67→ ∗ true

[p]C [ok : q] l:x := [y] [p] C; l:x := [y] [er(l) : q]
SE-LoadNull

q ` y = null ∗ true
[p]C [ok : q] l:x := [y] [p] C; l:x := [y] [er(l) : q]

SE-Store
x 7→ e ∗ F ` q ∗M mod(C) ∩ fv(M) = ∅

[p]C [ok : q] [x] := y  [p ∗M ]C; [x] := y [ok : x 7→ y ∗ F ]
SE-StoreEr

q ` x 67→ ∗ true
[p]C [ok : q] l: [x] := y  [p] C; l: [x] := y [er(l) : q]
SE-StoreNull

q ` x = null ∗ true
[p]C [ok : q] l: [x] := y  [p] C; l: [x] := y [er(l) : q]

SE-Free
x 7→ e ∗ F ` q ∗M mod(C) ∩ fv(M) = ∅

[p]C [ok : q] free(x) [p ∗M ]C; free(x) [ok : x 67→ ∗ F ]
SE-FreeEr

q ` x 67→ ∗ true
[p]C [ok : q] free(x) [p] C; free(x) [er(l) : q]
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