Parametric Completeness for Separation Theories

Jules Villard

University College London Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably **incomplete** (cf. Gödel).

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably **incomplete** (cf. Gödel).
- A potential gap between two key concepts
 - provability in some formal system for the logic; and

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably **incomplete** (cf. Gödel).
- A potential gap between two key concepts
 - provability in some formal system for the logic; and
 - validity in a (class of) intended model(s) of the logic.

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably **incomplete** (cf. Gödel).
- A potential gap between two key concepts
 - provability in some formal system for the logic; and
 - validity in a (class of) intended model(s) of the logic.

This talk

• Study this gap in the context of separation logic

Separation Logic (SL)

• Compositional program logic for heap-manipulating programs (C, C++, Java, ...)

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples {A} program {B}

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples {A} program {B}
- Assertions A, B: Boolean BI (BBI)

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples {*A*} program {*B*}
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

Models of BBI: partial commutative relational monoids

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples {*A*} program {*B*}
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location → Values

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples {*A*} program {*B*}
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location → Values
- In-between: separation theories satisfying some of functionality cancellativity single-unit ...

Given a logical language $\mathcal{L},$ and an intended class \mathcal{C} of models for that language,

1. Is C finitely axiomatisable, a.k.a. definable in L?

Given a logical language \mathcal{L} , and an intended class \mathcal{C} of models for that language,

- 1. Is C finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
- 2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

Given a logical language \mathcal{L} , and an intended class \mathcal{C} of models for that language,

- 1. Is C finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
- 2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

(Note that these questions are not connected, in general.)

Given a logical language $\mathcal{L},$ and an intended class \mathcal{C} of models for that language,

- 1. Is C finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
- 2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

(Note that these questions are not connected, in general.)

Pure separation logic

• *L* is Boolean BI (BBI);

Given a logical language $\mathcal{L},$ and an intended class \mathcal{C} of models for that language,

- 1. Is C finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
- 2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

(Note that these questions are not connected, in general.)

Pure separation logic

- \mathcal{L} is Boolean BI (BBI);
- the intended models are given by separation theories

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.

The rest of the talk goes as follows:

- 1. First, we recall the standard presentation of BBI.
- 2. We introduce **separation theories**, which describe practically interesting classes of models, and show that many such theories are **not definable** in BBI.

The rest of the talk goes as follows:

- 1. First, we recall the standard presentation of BBI.
- 2. We introduce **separation theories**, which describe practically interesting classes of models, and show that many such theories are **not definable** in BBI.
- We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.

The rest of the talk goes as follows:

- 1. First, we recall the standard presentation of BBI.
- 2. We introduce **separation theories**, which describe practically interesting classes of models, and show that many such theories are **not definable** in BBI.
- 3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.
- We show how to axiomatise validity in our hybrid system(s). Moreover, we do this such that completeness is parametric in the axioms defining separation theories.

Boolean BI

(Propositional) Boolean BI

(Propositional) Boolean Bl

BBI formula $A ::= P \mid \top \mid \bot \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \to A_2$ $\mid I \mid A_1 * A_2 \mid A_1 \twoheadrightarrow A_2$

(Propositional) Boolean Bl

Provability for the multiplicatives is given by

$A * B \vdash B * A$	$A*(B*C)\vdash (A*B)*C$	
$A \vdash A * I$	$A * I \vdash A$	
$A_1 \vdash B_1 A_2 \vdash B_2$	$A * B \vdash C$	$A \vdash B \twoheadrightarrow C$
$\overline{A_1 * A_2 \vdash B_1 * B_2}$	$\overline{A \vdash B \twoheadrightarrow C}$	$A * B \vdash C$

Typical example: heap models $\langle H, \circ, \{e\} \rangle$, where

Typical example: heap models $\langle H, \circ, \{e\} \rangle$, where

• *H* is the set of **heaps**, *i.e.* finite partial maps from locations to values,

Typical example: heap models $\langle H, \circ, \{e\} \rangle$, where

- *H* is the set of **heaps**, *i.e.* finite partial maps from locations to values,
- o is the union of domain-disjoint heaps, and

Typical example: heap models $\langle H, \circ, \{e\} \rangle$, where

- *H* is the set of **heaps**, *i.e.* finite partial maps from locations to values,
- • is the union of **domain-disjoint** heaps, and
- *e* is the empty heap that is undefined everywhere.

Semantics of BBI

A is valid in *M* iff $M, w \models_{\rho} A$ for all ρ and $w \in W$.

Semantics of BBI

A is valid in *M* iff $M, w \models_{\rho} A$ for all ρ and $w \in W$.

TheoremGalmiche and Larchey-Wendling 2006Provability in BBI coincides with validity in BBI-models.

(Un)definable properties in BBI

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory.

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Cancellativity: $(w \circ w_1) \cap (w \circ w_2) \neq \emptyset$ implies $w_1 = w_2$;

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Cancellativity: $(w \circ w_1) \cap (w \circ w_2) \neq \emptyset$ implies $w_1 = w_2$;

Single unit: |E| = 1;

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Cancellativity: $(w \circ w_1) \cap (w \circ w_2) \neq \emptyset$ implies $w_1 = w_2$;

Single unit: |E| = 1;

Indivisible units: $(w \circ w') \cap E \neq \emptyset$ implies $w \in E$;

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Cancellativity: $(w \circ w_1) \cap (w \circ w_2) \neq \emptyset$ implies $w_1 = w_2$;

Single unit: |E| = 1;

Indivisible units: $(w \circ w') \cap E \neq \emptyset$ implies $w \in E$;

Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

```
Partial functionality: w, w' \in w_1 \circ w_2 implies w = w';
```

```
Cancellativity: (w \circ w_1) \cap (w \circ w_2) \neq \emptyset implies w_1 = w_2;
```

```
Single unit: |E| = 1;
```

Indivisible units: $(w \circ w') \cap E \neq \emptyset$ implies $w \in E$;

```
Disjointness: w \circ w \neq \emptyset implies w \in E;
```

Divisibility: for every $w \notin E$ there are $w_1, w_2 \notin E$ such that $w \in w_1 \circ w_2$;

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

```
Partial functionality: w, w' \in w_1 \circ w_2 implies w = w';
```

```
Cancellativity: (w \circ w_1) \cap (w \circ w_2) \neq \emptyset implies w_1 = w_2;
```

```
Single unit: |E| = 1;
```

Indivisible units: $(w \circ w') \cap E \neq \emptyset$ implies $w \in E$;

```
Disjointness: w \circ w \neq \emptyset implies w \in E;
```

```
Divisibility: for every w \notin E there are w_1, w_2 \notin E such that w \in w_1 \circ w_2;
```

```
Cross-split property: whenever (a \circ b) \cap (c \circ d) \neq \emptyset, there exist ac, ad, bc, bd such that a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc and d \in ad \circ bd.
```

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w' \in w_1 \circ w_2$ implies w = w';

Cancellativity: $(w \circ w_1) \cap (w \circ w_2) \neq \emptyset$ implies $w_1 = w_2$;

Single unit: |E| = 1;

Indivisible units: $(w \circ w') \cap E \neq \emptyset$ implies $w \in E$;

Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;

Divisibility: for every $w \notin E$ there are $w_1, w_2 \notin E$ such that $w \in w_1 \circ w_2$;

Cross-split property:

$$\forall \left(\begin{array}{c} a \\ \end{array} \right) \left(\begin{array}{c} c \\ \hline d \end{array} \right) \exists \left(\begin{array}{c} ac \\ ad \\ bd \end{array} \right)$$

Separation Algebras throughout the Ages

DefinitionSeparation algebra (Calcagno et al. 07)A separation algebra is a BBI-model that is partial functional,
cancellative, and with a single unit.

Separation Algebras throughout the Ages

DefinitionSeparation algebra (Calcagno et al. 07)A separation algebra is a BBI-model that is partial functional,
cancellative, and with a single unit.

Definition Separation algebra (Dockins et al. 09) A separation algebra is a BBI-model that is partial functional and cancellative.

Separation Algebras throughout the Ages

DefinitionSeparation algebra (Calcagno et al. 07)A separation algebra is a BBI-model that is partial functional,
cancellative, and with a single unit.

Definition Separation algebra (Dockins et al. 09) A separation algebra is a BBI-model that is partial functional and cancellative.

DefinitionSeparation algebra (Dinsdale-Young et al. 13)A separation algebra is a BBI-model that is partial functional.

A class C of BBI-models is said to be \mathcal{L} -definable if there exists an \mathcal{L} -formula A such that for all BBI-models M,

A is valid in $M \iff M \in \mathcal{C}$.

A class C of BBI-models is said to be \mathcal{L} -definable if there exists an \mathcal{L} -formula A such that for all BBI-models M,

A is valid in $M \iff M \in C$.

Proposition

The following separation theory properties are BBI-definable:

A class C of BBI-models is said to be \mathcal{L} -definable if there exists an \mathcal{L} -formula A such that for all BBI-models M,

A is valid in $M \iff M \in C$.

Proposition

The following separation theory properties are BBI-definable:

Indivisible units: $I \land (A * B) \vdash A$

A class C of BBI-models is said to be \mathcal{L} -definable if there exists an \mathcal{L} -formula A such that for all BBI-models M,

A is valid in $M \iff M \in C$.

A class C of BBI-models is said to be \mathcal{L} -definable if there exists an \mathcal{L} -formula A such that for all BBI-models M,

A is valid in $M \iff M \in C$.

Proposition

The following separation theory properties are BBI-definable:

Proof.

Just directly verify the needed biimplication.

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

 $M_1 \uplus M_2 \stackrel{\text{\tiny def}}{=} \langle W_1 \cup W_2, \circ_1 \cup \circ_2, E_1 \cup E_2 \rangle$

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

$$M_1 \uplus M_2 \stackrel{\text{\tiny def}}{=} \langle W_1 \cup W_2, \circ_1 \cup \circ_2, E_1 \cup E_2 \rangle$$

Proposition

If A is valid in M_1 and in M_2 , and $M_1
ightarrow M_2$ is defined, then it is also valid in $M_1
ightarrow M_2$.

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

$$\textit{M}_{1} \uplus \textit{M}_{2} \stackrel{\text{\tiny def}}{=} \langle \textit{W}_{1} \cup \textit{W}_{2}, \circ_{1} \cup \circ_{2}, \textit{E}_{1} \cup \textit{E}_{2} \rangle$$

Proposition

If A is valid in M_1 and in M_2 , and $M_1 \uplus M_2$ is defined, then it is also valid in $M_1 \uplus M_2$.

Proof.

Structural induction on A.

Lemma

Let C be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in C$ but $M_1 \uplus M_2 \notin C$. Then C is not BBI-definable.

Lemma

Let C be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in C$ but $M_1 \uplus M_2 \notin C$. Then C is not BBI-definable.

Proof.

If C were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.

Lemma

Let C be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in C$ but $M_1 \uplus M_2 \notin C$. Then C is not BBI-definable.

Proof.

If C were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.

Theorem

The single unit property is not BBI-definable.

Lemma

Let C be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in C$ but $M_1 \uplus M_2 \notin C$. Then C is not BBI-definable.

Proof.

If C were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.

Theorem

The single unit property is not BBI-definable.

Proof.

The disjoint union of any two single-unit BBI-models (e.g. two copies of \mathbb{N} under addition) is not a single-unit model, so we are done by the above Lemma.

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

• functionality;

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Proof.

E.g., for functionality, we build models M and M' such that there is a bounded morphism from M to M', but M is functional while M' is not. See paper for details.

Hybrid BBI

• We saw that BBI is not expressive enough to accurately capture many separation theories.

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$A ::= \ldots \mid \ell \mid @_{\ell}A$$

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$A ::= \ldots \mid \ell \mid @_{\ell}A$$

 Valuations interpret nominals as individual worlds in a BBI-model.

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$A ::= \ldots \mid \ell \mid @_{\ell}A$$

• Valuations interpret nominals as **individual worlds** in a BBI-model.

Forcing relation (extended)

$$\boldsymbol{M}, \boldsymbol{w} \models_{\rho} \ell \quad \Leftrightarrow \quad \boldsymbol{w} = \rho(\ell)$$

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$A ::= \ldots \mid \ell \mid @_{\ell}A$$

• Valuations interpret nominals as **individual worlds** in a BBI-model.

 M, w \models_{\rho} \ell \iff w = \rho(\ell)

 M, w \models_{\rho} O_{\ell} A \iff M, \rho(\ell) \models_{\rho} A

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$A ::= \ldots \mid \ell \mid @_{\ell}A$$

• Valuations interpret nominals as **individual worlds** in a BBI-model.

 M, w \models_{\rho} \ell \iff w = \rho(\ell)

 M, w \models_{\rho} @_{\ell} A \iff M, \rho(\ell) \models_{\rho} A

• Fact: HyBBI is a conservative extension of BBI.

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

Functionality: $\mathbb{Q}_{\ell}(j * k) \land \mathbb{Q}_{\ell'}(j * k) \vdash \mathbb{Q}_{\ell}\ell'$

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

Functionality: $\mathbb{Q}_{\ell}(j * k) \land \mathbb{Q}_{\ell'}(j * k) \vdash \mathbb{Q}_{\ell}\ell'$ Cancellativity: $\ell * j \land \ell * k \vdash \mathbb{Q}_{j}k$

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

 $\begin{array}{lll} \textit{Functionality:} & \mathbb{Q}_{\ell}(j \ast k) \land \mathbb{Q}_{\ell'}(j \ast k) \vdash \mathbb{Q}_{\ell}\ell' \\ \textit{Cancellativity:} & \ell \ast j \land \ell \ast k \vdash \mathbb{Q}_{j}k \\ \textit{Single unit:} & \mathbb{Q}_{\ell_{1}}I \land \mathbb{Q}_{\ell_{2}}I \vdash \mathbb{Q}_{\ell_{1}}\ell_{2} \end{array}$

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

 $\begin{array}{lll} \mbox{Functionality:} & \mathbb{Q}_{\ell}(j \ast k) \land \mathbb{Q}_{\ell'}(j \ast k) \vdash \mathbb{Q}_{\ell}\ell' \\ \mbox{Cancellativity:} & \ell \ast j \land \ell \ast k \vdash \mathbb{Q}_{j}k \\ \mbox{Single unit:} & \mathbb{Q}_{\ell_1} I \land \mathbb{Q}_{\ell_2} I \vdash \mathbb{Q}_{\ell_1}\ell_2 \\ \mbox{Disjointness:} & \ell \ast \ell \vdash I \land \ell \end{array}$

Proof.

Easy verifications!

Overlapping conjunction

 $\begin{array}{l} \textit{M},\textit{w} \models_{\rho} \textit{A}_{1} \uplus \textit{A}_{2} \Leftrightarrow \exists \textit{w}_{1},\textit{w}_{2},\textit{w}_{3},\textit{w}',\textit{w}'' \in \textit{W}.\\ \textit{w}' \in \textit{w}_{1} \circ \textit{w}_{2} \text{ and } \textit{w}'' \in \textit{w}_{2} \circ \textit{w}_{3} \text{ and } \textit{w} \in \textit{w}' \circ \textit{w}_{3}\\ \textit{and } \textit{M},\textit{w}' \models_{\rho} \textit{A}_{1} \textit{ and } \textit{M},\textit{w}'' \models_{\rho} \textit{A}_{2} \end{array}$

Overlapping conjunction

 $\begin{array}{l} \textit{M},\textit{w} \models_{\rho} \textit{A}_{1} \uplus \textit{A}_{2} \Leftrightarrow \exists \textit{w}_{1},\textit{w}_{2},\textit{w}_{3},\textit{w}',\textit{w}'' \in \textit{W}.\\ \textit{w}' \in \textit{w}_{1} \circ \textit{w}_{2} \text{ and } \textit{w}'' \in \textit{w}_{2} \circ \textit{w}_{3} \text{ and } \textit{w} \in \textit{w}' \circ \textit{w}_{3}\\ \textit{and } \textit{M},\textit{w}' \models_{\rho} \textit{A}_{1} \textit{ and } \textit{M},\textit{w}'' \models_{\rho} \textit{A}_{2} \end{array}$

By naming the shared part, one can easily define the overlapping conjuction:

$$(\ell_s \twoheadrightarrow A_1) * (\ell_s \twoheadrightarrow A_2) * \ell_s$$

Overlapping conjunction

 $\begin{array}{l} \textit{M},\textit{w} \models_{\rho} \textit{A}_{1} \uplus \textit{A}_{2} \Leftrightarrow \exists \textit{w}_{1},\textit{w}_{2},\textit{w}_{3},\textit{w}',\textit{w}'' \in \textit{W}.\\ \textit{w}' \in \textit{w}_{1} \circ \textit{w}_{2} \text{ and } \textit{w}'' \in \textit{w}_{2} \circ \textit{w}_{3} \text{ and } \textit{w} \in \textit{w}' \circ \textit{w}_{3}\\ \textit{and } \textit{M},\textit{w}' \models_{\rho} \textit{A}_{1} \textit{ and } \textit{M},\textit{w}'' \models_{\rho} \textit{A}_{2} \end{array}$

By naming the shared part, one can easily define the overlapping conjuction:

$$(\ell_s \twoheadrightarrow A_1) * (\ell_s \twoheadrightarrow A_2) * \ell_s$$

(but where does ℓ_s come from?..)

We have brushed over the cross-split property:

 $(a \circ b) \cap (c \circ d) \neq \emptyset$, implies $\exists ac, ad, bc, bd$ with $a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd$.

We have brushed over the cross-split property:

 $\begin{array}{l} (a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with} \\ a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd. \\ \forall \left(\begin{array}{c} a \\ \end{array} \right) \left(\begin{array}{c} c \\ d \end{array} \right) \exists \left(\begin{array}{c} ac \\ ad \\ \end{array} \right) \\ \hline \end{array}$

We have brushed over the cross-split property:

 $\begin{array}{l} (a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with} \\ a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd. \\ \forall \left(\begin{array}{c} a \\ b \end{array} \right) \left(\begin{array}{c} c \\ d \end{array} \right) \exists \left(\begin{array}{c} ac \\ bd \end{array} \right) \\ \hline ad \\ bd \end{array}$

We conjecture this is not definable in BBI or in HyBBI.

We have brushed over the cross-split property:

 $\begin{array}{l} (a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with} \\ a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd. \\ \forall \left(\begin{array}{c} a \\ \end{array} \right) \left(\begin{array}{c} c \\ d \end{array} \right) \exists \left(\begin{array}{c} ac \\ ad \\ bd \end{array} \right) \end{array}$

We conjecture this is not definable in BBI or in HyBBI. If we add the \downarrow binder to HyBBI, defined by

$$\boldsymbol{M}, \boldsymbol{w} \models_{\rho} \downarrow \ell. \boldsymbol{A} \quad \Leftrightarrow \quad \boldsymbol{M}, \boldsymbol{w} \models_{\rho[\ell:=\boldsymbol{w}]} \boldsymbol{A}$$

We have brushed over the cross-split property:

 $\begin{array}{l} (a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with} \\ a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd. \\ \forall \left(\begin{array}{c} a \\ \end{array} \right) \left(\begin{array}{c} c \\ d \end{array} \right) \exists \left(\begin{array}{c} ac \\ ad \\ bd \end{array} \right) \end{array}$

We conjecture this is not definable in BBI or in HyBBI. If we add the \downarrow binder to HyBBI, defined by

$$M, w \models_{\rho} \downarrow \ell. A \Leftrightarrow M, w \models_{\rho[\ell:=w]} A$$

then cross-split is definable as the pure formula

$$(a * b) \land (c * d) \vdash @_a(\top * \downarrow ac. @_a(\top * \downarrow ad. @_a(ac * ad)) \land @_b(\top * \downarrow bc. @_b(\top * \downarrow bd. @_b(bc * bd)) \land @_c(ac * bc) \land @_d(ad * bd)))))$$

Overlapping conjunction (bis)

Overlapping conjunction (bis)

Proposition

 $A_1 \bowtie A_2$ is definable via the following HyBBI(\downarrow) formula, where ℓ and ℓ_s do not occur in A_1 or A_2 :

$$\downarrow \ell. \top * \downarrow \ell_s. @_{\ell}(\ell_s \twoheadrightarrow A_1) * (\ell_s \twoheadrightarrow A_2) * \ell_s$$

(where $A \twoheadrightarrow B \stackrel{\text{def}}{=} \neg (A \twoheadrightarrow \neg B)$)

Parametric completeness for HyBBI(\downarrow)

Our axiom system $\mathbf{K}_{HyBBI(\downarrow)}$ is chosen to make the completeness proof as clean as possible.

$$(\mathcal{K}_{@})$$
 $@_{\ell}(A \rightarrow B) \vdash @_{\ell}A \rightarrow @_{\ell}B$

$$\begin{array}{ll} (K_{\textcircled{0}}) & \textcircled{0}_{\ell}(A \rightarrow B) \vdash \textcircled{0}_{\ell}A \rightarrow \textcircled{0}_{\ell}B \\ (\textcircled{0}\text{-intro}) & \pounds \land A \vdash \textcircled{0}_{\ell}A \end{array}$$

$$\begin{array}{ll} (K_{@}) & @_{\ell}(A \to B) \vdash @_{\ell}A \to @_{\ell}B \\ (@\text{-intro}) & \ell \land A \vdash @_{\ell}A \\ (Bridge *) & @_{\ell}(k * k') \land @_{k}A \land @_{k'}B \vdash @_{\ell}(A * B) \end{array}$$

$$\begin{array}{ll} (K_{@}) & \mathbb{Q}_{\ell}(A \to B) \vdash \mathbb{Q}_{\ell}A \to \mathbb{Q}_{\ell}B \\ (@\text{-intro}) & \ell \land A \vdash \mathbb{Q}_{\ell}A \\ (Bridge *) & \mathbb{Q}_{\ell}(k * k') \land \mathbb{Q}_{k}A \land \mathbb{Q}_{k'}B \vdash \mathbb{Q}_{\ell}(A * B) \\ (Bind \downarrow) & \vdash \mathbb{Q}_{i}(\downarrow \ell. B \leftrightarrow B[j/\ell]) \end{array}$$

Our axiom system $K_{HyBBI(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

$$\begin{array}{ll} (K_{\textcircled{0}}) & \textcircled{0}_{\ell}(A \to B) \vdash \textcircled{0}_{\ell}A \to \textcircled{0}_{\ell}B \\ (@\text{-intro}) & \ell \land A \vdash \textcircled{0}_{\ell}A \\ (Bridge *) & \textcircled{0}_{\ell}(k * k') \land \textcircled{0}_{k}A \land \textcircled{0}_{k'}B \vdash \textcircled{0}_{\ell}(A * B) \\ (Bind \downarrow) & \vdash \textcircled{0}_{j}(\downarrow \ell. B \leftrightarrow B[j/\ell]) \\ \textcircled{0}_{\ell}(k * k') \land \textcircled{0}_{k}A \land \textcircled{0}_{k'}B \vdash C & k k' \text{ not in } A B \ C \text{ or } . \end{array}$$

$$@_\ell(A*B) \vdash C$$

k, *k*′ not in *A*, *B*, *C* or {*ℓ*} (Paste ∗)

Our axiom system $K_{HyBBI(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

$$\begin{array}{ll} (K_{\textcircled{o}}) & \textcircled{o}_{\ell}(A \to B) \vdash \textcircled{o}_{\ell}A \to \textcircled{o}_{\ell}B \\ (@\text{-intro}) & \ell \land A \vdash \textcircled{o}_{\ell}A \\ (Bridge *) & \textcircled{o}_{\ell}(k * k') \land \textcircled{o}_{k}A \land \textcircled{o}_{k'}B \vdash \textcircled{o}_{\ell}(A * B) \\ (Bind \downarrow) & \vdash \textcircled{o}_{j}(\downarrow\ell.B \leftrightarrow B[j/\ell]) \end{array}$$

$$\frac{\mathbb{Q}_{\ell}(k \ast k') \land \mathbb{Q}_{k}A \land \mathbb{Q}_{k'}B \vdash C}{\mathbb{Q}_{\ell}(A \ast B) \vdash C} \qquad \begin{array}{c} k, k' \text{ not in } A, B, C \text{ or } \{\ell\} \\ \text{(Paste *)} \end{array}$$

PropositionSoundnessAny K_{HVBBI(L)}-provable sequent is valid in all BBI-models.

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

- Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
- 2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition *P* is true at *w* iff $P \in w$.

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

- 1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
- 2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition *P* is true at *w* iff $P \in w$.
- 3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.

Completeness

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

- 1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
- 2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition *P* is true at *w* iff $P \in w$.
- 3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.
- Now, if *A* is unprovable, {¬*A*} is consistent so there is an MCS *w* ⊃ {¬*A*}. Then *A* is false at *w* in the canonical model, hence invalid.

Completeness

Standard modal logic approach to completeness via **maximal** consistent sets (MCSs):

- 1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
- 2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition *P* is true at *w* iff $P \in w$.
- 3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.
- Now, if *A* is unprovable, {¬*A*} is consistent so there is an MCS *w* ⊃ {¬*A*}. Then *A* is false at *w* in the canonical model, hence invalid.

(In our case, we also have to show that the canonical model is really a BBI-model.)

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem

Parametric completeness

If A is valid in the class of BBI-models satisfying Ax, then it is provable in $\mathbf{K}_{HyBBI(\downarrow)} + Ax$.

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem

Parametric completeness

If A is valid in the class of BBI-models satisfying Ax, then it is provable in $\mathbf{K}_{HyBBI(\downarrow)} + Ax$.

Corollary

By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection.

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem

Parametric completeness

If A is valid in the class of BBI-models satisfying Ax, then it is provable in $\mathbf{K}_{HyBBI(\downarrow)} + Ax$.

Corollary

By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection. In particular, we obtain sound and complete proof systems for separation algebras.

Conclusion

 BBI is insufficiently expressive to capture the classes of models of typical practical interest.

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
 - identification of decidable fragments;

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
 - identification of decidable fragments;
 - search for nice structural proof theories;

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
 - identification of decidable fragments;
 - search for nice structural proof theories;
 - investigate possible applications to program analysis.

Thanks for listening!

Draft paper available from authors' webpages:

J. Brotherston and J. Villard. Parametric completeness for separation theories. To be presented at POPL'14.

Parametric Completeness for Separation Theories

Jules Villard

University College London Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)