Parametric Completeness for Separation Theories

Jules Villard

University College London
Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)

Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- provability in some formal system for the logic; and

Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- provability in some formal system for the logic; and
- validity in a (class of) intended model(s) of the logic.

Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- provability in some formal system for the logic; and
- validity in a (class of) intended model(s) of the logic.

This talk

- Study this gap in the context of separation logic

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples $\{A\}$ program $\{B\}$

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples $\{A\}$ program $\{B\}$
- Assertions A, B: Boolean BI (BBI)

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples $\{A\}$ program $\{B\}$
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples $\{A\}$ program $\{B\}$
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location \rightharpoonup Values

Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples $\{A\}$ program $\{B\}$
- Assertions A, B: Boolean BI (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location \rightharpoonup Values
- In-between: separation theories satisfying some of functionality cancellativity single-unit ...

Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?

Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?
(Note that these questions are not connected, in general.)

Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?
(Note that these questions are not connected, in general.)
Pure separation logic

- \mathcal{L} is Boolean $\mathrm{BI}(\mathrm{BBI}) ;$

Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?
(Note that these questions are not connected, in general.)
Pure separation logic

- \mathcal{L} is Boolean BI (BBI);
- the intended models are given by separation theories

Outline

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.

Outline

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.
2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.

Outline

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.
2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.
3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.

Outline

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.
2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.
3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.
4. We show how to axiomatise validity in our hybrid system(s). Moreover, we do this such that completeness is parametric in the axioms defining separation theories.

Boolean BI

(Propositional) Boolean BI

BBI formula

$$
\begin{aligned}
A::= & P|T| \perp|\neg A| A_{1} \wedge A_{2}\left|A_{1} \vee A_{2}\right| A_{1} \rightarrow A_{2} \\
& |\mathrm{I}| A_{1} * A_{2} \mid A_{1} \rightarrow A_{2}
\end{aligned}
$$

(Propositional) Boolean BI

BBI formula

$$
\begin{aligned}
A::= & P|T| \perp|\neg A| A_{1} \wedge A_{2}\left|A_{1} \vee A_{2}\right| A_{1} \rightarrow A_{2} \\
& |\mathrm{I}| A_{1} * A_{2} \mid A_{1} \rightarrow A_{2}
\end{aligned}
$$

(Propositional) Boolean BI

BBI formula

$$
\begin{aligned}
A::= & P|\top| \perp|\neg A| A_{1} \wedge A_{2}\left|A_{1} \vee A_{2}\right| A_{1} \rightarrow A_{2} \\
& |\mathrm{I}| A_{1} * A_{2} \mid A_{1} \rightarrow A_{2}
\end{aligned}
$$

Magic Wand

 A_{2}

Proof theory of BBI

Provability for the multiplicatives is given by

$$
\begin{array}{cc}
A * B \vdash B * A & A *(B * C) \vdash(A * B) * C \\
A \vdash A * \mathrm{I} & A * \mathrm{I} \vdash A \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} * A_{2} \vdash B_{1} * B_{2}} & \frac{A * B \vdash C}{A \vdash B * C}
\end{array}
$$

BBI-models

BBI model $\langle W, \circ, E\rangle$

A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- $\circ: W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$
(multi-units)

BBI-models

BBI model

A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- $\circ: W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$ (multi-units) (that is, $\forall e \in E . w \circ e \subseteq\{w\}$ and $\exists e \in E . w \circ e=\{w\}$)

BBI-models

BBI model
A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- 。: $W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$
(multi-units) (that is, $\forall e \in E . w \circ e \subseteq\{w\}$ and $\exists e \in E . w \circ e=\{w\}$)

Typical example: heap models $\langle H, \circ,\{e\}\rangle$, where

BBI-models

BBI model

A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- $\circ: W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, W_{2} \in W_{2}} W_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$ (that is, $\forall e \in E . w \circ e \subseteq\{w\}$ and $\exists e \in E . w \circ e=\{w\}$)

Typical example: heap models $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps from locations to values,

BBI-models

BBI model

A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- $\circ: W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, W_{2} \in W_{2}} W_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$ (that is, $\forall e \in E . w \circ e \subseteq\{w\}$ and $\exists e \in E . w \circ e=\{w\}$)

Typical example: heap models $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps from locations to values,
- \circ is the union of domain-disjoint heaps, and

BBI-models

BBI model

A relational commutative monoid, i.e a tuple $\langle W, \circ, E\rangle$ where

- $\circ: W \times W \rightarrow \mathcal{P}(W)$

$$
\left(\text { lifted to } W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{W_{1} \in W_{1}, W_{2} \in W_{2}} W_{1} \circ W_{2}\right)
$$

- o commutative and associative
- $E \subseteq W$ and $\forall w \in W . w \circ E=\{w\}$ (that is, $\forall e \in E . w \circ e \subseteq\{w\}$ and $\exists e \in E . w \circ e=\{w\}$)

Typical example: heap models $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps from locations to values,
- o is the union of domain-disjoint heaps, and
- e is the empty heap that is undefined everywhere.

Semantics of BBI

$$
\begin{array}{cc}
\hline \text { Forcing relation } M, w=_{\rho} A & M=\langle W, \circ, E\rangle \\
\hline M, w \models_{\rho} P \Leftrightarrow w \in \rho(P) &
\end{array}
$$

Semantics of BBI

$$
\begin{aligned}
& \text { Forcing relation } M, w \models_{\rho} A \\
& M, w \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
& M, w \models_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1} \text { and } M, w \models_{\rho} A_{2}
\end{aligned}
$$

Semantics of BBI

Forcing relation $M, w \models_{\rho} A$
$M, w \models_{\rho} P \Leftrightarrow w \in \rho(P)$
$M, w \models_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1}$ and $M, w \models_{\rho} A_{2}$
\vdots
$M, w \models_{\rho} \mathrm{I} \Leftrightarrow w \in E$

Semantics of BBI

$$
\begin{gathered}
\text { Forcing relation } M, w \models_{\rho} A \\
M, w \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
M, w \models_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1} \text { and } M, w \models_{\rho} A_{2} \\
\vdots \\
M, w \models_{\rho} \mathrm{I} \Leftrightarrow w \in E \\
M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } M, w_{1} \models_{\rho} A_{1} \text { and } M, w_{2} \models_{\rho} A_{2}
\end{gathered}
$$

Semantics of BBI

$$
\begin{aligned}
& \text { Forcing relation } M, w \models_{\rho} A \quad M=\langle W, \circ, E\rangle \\
& M, w \models{ }_{\rho} P \Leftrightarrow w \in \rho(P) \\
& M, w \models{ }_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1} \text { and } M, w \models_{\rho} A_{2} \\
& M, w \neq{ }_{\rho} \mathrm{I} \Leftrightarrow w \in E \\
& M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } M, w_{1} \models_{\rho} A_{1} \text { and } M, w_{2} \models_{\rho} A_{2} \\
& M, w \models{ }_{\rho} A_{1} * A_{2} \Leftrightarrow \forall w^{\prime}, w^{\prime \prime} \in W \text {. if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } M, w^{\prime} \models_{\rho} A_{1} \\
& \text { then } M, w^{\prime \prime} \models_{\rho} A_{2}
\end{aligned}
$$

Semantics of BBI

$$
\begin{array}{rl}
\text { Forcing relation } M, w \models{ }_{\rho} A & M=\langle W, \circ, E\rangle \\
M, w \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
M, w \models_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1} \text { and } M, w \models_{\rho} A_{2} \\
\vdots & \\
M, w \models_{\rho} \mathrm{I} \Leftrightarrow w \in E \\
M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } M, w_{1} \models_{\rho} A_{1} \text { and } M, w_{2} \models_{\rho} A_{2} \\
M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } M, w^{\prime} \models_{\rho} A_{1} \\
& \text { then } M, w^{\prime \prime} \models_{\rho} A_{2}
\end{array}
$$

A is valid in M iff $M, w \in{ }_{\rho} A$ for all ρ and $w \in W$.

Semantics of BBI

$$
\begin{gathered}
\text { Forcing relation } M, w \models_{\rho} A \\
M, W \models_{\rho} P \Leftrightarrow W \in\langle(P) \\
M, w \models_{\rho} A_{1} \wedge A_{2} \Leftrightarrow M, w \models_{\rho} A_{1} \text { and } M, w \models_{\rho} A_{2} \\
\vdots \\
M, w \models_{\rho} \mathrm{I} \Leftrightarrow w \in E \\
M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } M, w_{1} \models_{\rho} A_{1} \text { and } M, w_{2} \models_{\rho} A_{2} \\
M, w \models_{\rho} A_{1} * A_{2} \Leftrightarrow \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } M, w^{\prime} \models_{\rho} A_{1} \\
\\
\\
\\
\\
\text { then } M, w^{\prime \prime} \models_{\rho} A_{2}
\end{gathered}
$$

A is valid in M iff $M, w \models_{\rho} A$ for all ρ and $w \in W$.
Theorem Galmiche and Larchey-Wendling 2006
Provability in BBI coincides with validity in BBI-models.
(Un)definable properties in BBI

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory.

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;
Divisibility: for every $w \notin E$ there are $w_{1}, w_{2} \notin E$ such that $w \in W_{1} \circ W_{2}$;

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;
Divisibility: for every $w \notin E$ there are $w_{1}, w_{2} \notin E$ such that $w \in w_{1} \circ W_{2} ;$

Cross-split property: whenever $(a \circ b) \cap(c \circ d) \neq \emptyset$, there exist $a c, a d, b c, b d$ such that $a \in a c \circ a d, b \in b c \circ b d$, $c \in a c \circ b c$ and $d \in a d \circ b d$.

Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:
Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2}$;
Single unit: $|E|=1$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;
Divisibility: for every $w \notin E$ there are $w_{1}, w_{2} \notin E$ such that

$$
w \in w_{1} \circ w_{2}
$$

Cross-split property:

$$
\forall a b a c
$$

Separation Algebras throughout the Ages

Definition Separation algebra (Calcagno et al. 07)
A separation algebra is a BBI-model that is partial functional, cancellative, and with a single unit.

Separation Algebras throughout the Ages

Definition Separation algebra (Calcagno et al. 07) A separation algebra is a BBI-model that is partial functional, cancellative, and with a single unit.

Definition Separation algebra (Dockins et al. 09)
A separation algebra is a BBI -model that is partial functional and cancellative.

Separation Algebras throughout the Ages

Definition Separation algebra (Calcagno et al. 07) A separation algebra is a BBI -model that is partial functional, cancellative, and with a single unit.

Definition Separation algebra (Dockins et al. 09)
A separation algebra is a BBI-model that is partial functional and cancellative.

Definition Separation algebra (Dinsdale-Young et al. 13) A separation algebra is a BBI-model that is partial functional.

Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,
A is valid in $M \Longleftrightarrow M \in \mathcal{C}$.

Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{C} .
$$

Proposition

The following separation theory properties are BBI-definable:

Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{C}
$$

Proposition

The following separation theory properties are BBI-definable:

$$
\text { Indivisible units: } \mathrm{I} \wedge(A * B) \vdash A
$$

Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{C}
$$

Proposition

The following separation theory properties are BBI-definable:

$$
\begin{array}{lr}
\text { Indivisible units: } & \mathrm{I} \wedge(A * B) \vdash A \\
\text { Divisibility: } & \neg \mathrm{I} \vdash \neg \mathrm{I} * \neg \mathrm{I}
\end{array}
$$

Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{C}
$$

Proposition

The following separation theory properties are BBI-definable:

$$
\begin{array}{lr}
\text { Indivisible units: } & \mathrm{I} \wedge(A * B) \vdash A \\
\text { Divisibility: } & \neg \mathrm{I} \vdash \neg \mathrm{I} * \neg \mathrm{I}
\end{array}
$$

Proof.

Just directly verify the needed biimplication.

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, \circ_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, o_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

Proposition

If A is valid in M_{1} and in M_{2}, and $M_{1} \uplus M_{2}$ is defined, then it is also valid in $M_{1} \uplus M_{2}$.

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, \circ_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

Proposition

If A is valid in M_{1} and in M_{2}, and $M_{1} \uplus M_{2}$ is defined, then it is also valid in $M_{1} \uplus M_{2}$.

Proof.
Structural induction on A.

Undefinability of single-unit property

Lemma

Let \mathcal{C} be a class of BBI -models, and suppose that there exist BBI-models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{C}$ but $M_{1} \uplus M_{2} \notin \mathcal{C}$. Then \mathcal{C} is not BBI -definable.

Undefinability of single-unit property

Lemma

Let \mathcal{C} be a class of BBI-models, and suppose that there exist BBI-models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{C}$ but $M_{1} \uplus M_{2} \notin \mathcal{C}$. Then \mathcal{C} is not BBI -definable.

Proof.

If \mathcal{C} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Undefinability of single-unit property

Lemma

Let \mathcal{C} be a class of BBI -models, and suppose that there exist BBI-models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{C}$ but $M_{1} \uplus M_{2} \notin \mathcal{C}$. Then \mathcal{C} is not BBI -definable.

Proof.

If \mathcal{C} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Theorem
The single unit property is not BBI-definable.

Undefinability of single-unit property

Lemma

Let \mathcal{C} be a class of BBI-models, and suppose that there exist BBI-models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{C}$ but $M_{1} \uplus M_{2} \notin \mathcal{C}$. Then \mathcal{C} is not BBI -definable.

Proof.

If \mathcal{C} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Theorem
The single unit property is not BBI-definable.

Proof.

The disjoint union of any two single-unit BBI-models (e.g. two copies of \mathbb{N} under addition) is not a single-unit model, so we are done by the above Lemma.

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI -models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Proof.

E.g., for functionality, we build models M and M^{\prime} such that there is a bounded morphism from M to M^{\prime}, but M is functional while M^{\prime} is not. See paper for details.

Hybrid BBI

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$
A::=\ldots|\ell| @_{\ell} A
$$

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$
A::=\ldots|\ell| @_{\ell} A
$$

- Valuations interpret nominals as individual worlds in a BBI-model.

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$
A::=\ldots|\ell| @_{\ell} A
$$

- Valuations interpret nominals as individual worlds in a BBI-model.

Forcing relation (extended)

$$
M, w \models_{\rho} \ell \Leftrightarrow w=\rho(\ell)
$$

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$
A::=\ldots|\ell| @_{\ell} A
$$

- Valuations interpret nominals as individual worlds in a BBI-model.

Forcing relation (extended)

$$
\begin{aligned}
M, w \models_{\rho} \ell & \Leftrightarrow w=\rho(\ell) \\
M, w \models{ }_{\rho} \bigotimes_{\ell} A & \Leftrightarrow M, \rho(\ell) \models_{\rho} A
\end{aligned}
$$

HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

$$
A::=\ldots|\ell| @_{\ell} A
$$

- Valuations interpret nominals as individual worlds in a BBI-model.

Forcing relation (extended)

$$
\begin{aligned}
M, w \models_{\rho} \ell & \Leftrightarrow w=\rho(\ell) \\
M, w \mid=_{\rho} \bigotimes_{\ell} A & \Leftrightarrow M, \rho(\ell) \models_{\rho} A
\end{aligned}
$$

- Fact: HyBBI is a conservative extension of BBI.

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

Functionality: $\quad @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime}$

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

$$
\begin{array}{lc}
\text { Functionality: } & @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\text { Cancellativity: } & \ell * j \wedge \ell * k \vdash @_{j} k
\end{array}
$$

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

Functionality: $\quad @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime}$ Cancellativity: $\quad \ell * j \wedge \ell * k \vdash @_{j} k$ Single unit:

$$
@_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1}} \ell_{2}
$$

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

$$
\begin{array}{lr}
\text { Functionality: } & @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\text { Cancellativity: } & \ell * j \wedge \ell * k \vdash @_{j} k \\
\text { Single unit: } & @_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1} \ell_{2}} \\
\text { Disjointness: } & \ell * \ell \vdash \mathrm{I} \wedge \ell
\end{array}
$$

Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable, using pure formulas:

$$
\begin{array}{lr}
\text { Functionality: } & @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\text { Cancellativity: } & \ell * j \wedge \ell * k \vdash @_{j} k \\
\text { Single unit: } & @_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1} \ell_{2}} \\
\text { Disjointness: } & \ell * \ell \vdash \mathrm{I} \wedge \ell
\end{array}
$$

Proof.
Easy verifications!

Overlapping conjunction

$M, w \vDash{ }_{\rho} A_{1} * A_{2} \Leftrightarrow \exists w_{1}, w_{2}, w_{3}, w^{\prime}, w^{\prime \prime} \in W$. $w^{\prime} \in w_{1} \circ w_{2}$ and $w^{\prime \prime} \in w_{2} \circ w_{3}$ and $w \in w^{\prime} \circ w_{3}$ and $M, w^{\prime} \models{ }_{\rho} A_{1}$ and $M, w^{\prime \prime} \models{ }_{\rho} A_{2}$

Overlapping conjunction

$M, w \in{ }_{\rho} A_{1} * A_{2} \Leftrightarrow \exists w_{1}, w_{2}, w_{3}, w^{\prime}, w^{\prime \prime} \in W$.

$$
w^{\prime} \in w_{1} \circ w_{2} \text { and } w^{\prime \prime} \in w_{2} \circ w_{3} \text { and } w \in w^{\prime} \circ w_{3}
$$

$$
\text { and } M, w^{\prime} \models_{\rho} A_{1} \text { and } M, w^{\prime \prime} \models_{\rho} A_{2}
$$

By naming the shared part, one can easily define the overlapping conjuction:

$$
\left(\ell_{s} * A_{1}\right) *\left(\ell_{s} * A_{2}\right) * \ell_{s}
$$

Overlapping conjunction

$M, w \in{ }_{\rho} A_{1} * A_{2} \Leftrightarrow \exists w_{1}, w_{2}, w_{3}, w^{\prime}, w^{\prime \prime} \in W$.

$$
w^{\prime} \in w_{1} \circ w_{2} \text { and } w^{\prime \prime} \in w_{2} \circ w_{3} \text { and } w \in w^{\prime} \circ w_{3}
$$

$$
\text { and } M, w^{\prime} \models{ }_{\rho} A_{1} \text { and } M, w^{\prime \prime} \models_{\rho} A_{2}
$$

By naming the shared part, one can easily define the overlapping conjuction:

$$
\left(\ell_{s} * A_{1}\right) *\left(\ell_{s} * A_{2}\right) * \ell_{s}
$$

(but where does ℓ_{s} come from?..)

A word about cross-split

We have brushed over the cross-split property:
$(a \circ b) \cap(c \circ d) \neq \emptyset$, implies $\exists a c, a d, b c, b d$ with
$a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d$.

A word about cross-split

We have brushed over the cross-split property:
$(a \circ b) \cap(c \circ d) \neq \emptyset$, implies $\exists a c, a d, b c, b d$ with
$a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d$.
$\forall a b \frac{c}{d} \exists \frac{a c \mid b c}{a d b d}$

A word about cross-split

We have brushed over the cross-split property:

$$
(a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with }
$$

$$
a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
$$

$$
\forall a b a c \frac{c}{d} \exists \frac{a c \mid b c}{a d b d}
$$

We conjecture this is not definable in BBI or in HyBBI .

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

$$
\forall a b a \frac{c}{d} \exists \frac{a c \mid b c}{a d b d}
$$

We conjecture this is not definable in BBI or in HyBBI . If we add the \downarrow binder to HyBBI, defined by

$$
M, w \models_{\rho} \downarrow \ell . A \Leftrightarrow M, w \models_{\rho[\ell:=w]} A
$$

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

We conjecture this is not definable in BBI or in HyBBI. If we add the \downarrow binder to HyBBI, defined by

$$
M, w \models_{\rho} \downarrow \ell . A \Leftrightarrow M, w \models_{\rho[\ell:=w]} A
$$

then cross-split is definable as the pure formula

$$
\begin{aligned}
&(a * b) \wedge(c * d) \vdash @_{a}\left(T * \downarrow a c . @_{a}\left(T * \downarrow a d . @_{a}(a c * a d)\right.\right. \\
& \wedge @_{b}\left(\top * \downarrow b c . @_{b}\left(T * \downarrow b d . @_{b}(b c * b d)\right.\right. \\
&\left.\left.\left.\left.\wedge @_{c}(a c * b c) \wedge @_{d}(a d * b d)\right)\right)\right)\right)
\end{aligned}
$$

Overlapping conjunction (bis)

Overlapping conjunction (bis)

Proposition

$A_{1} \uplus A_{2}$ is definable via the following $\mathrm{HyBBI}(\downarrow)$ formula, where ℓ and ℓ_{s} do not occur in A_{1} or A_{2} :

$$
\downarrow \ell . T * \downarrow \ell_{s} . @_{\ell}\left(\ell_{s}-\circledast A_{1}\right) *\left(\ell_{s}-\circledast A_{2}\right) * \ell_{s}
$$

(where $A-\circledast B \stackrel{\text { def }}{=} \neg(A \rightarrow \neg B)$)

Parametric completeness for $\mathrm{HyBBI}(\downarrow)$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible.

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:
$\left(K_{\odot}\right)$
$@_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:
(K_{\odot})
(@-intro)

$$
\begin{gathered}
@_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B \\
\ell \wedge A \vdash @_{\ell} A
\end{gathered}
$$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

(K_{\odot})
(@-intro)
(Bridge *)

$@_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B$
$\ell \wedge A \vdash @_{\ell} A$
$\varrho_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge \varrho_{k^{\prime}} B \vdash @_{\ell}(A * B)$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

(K_{ϱ})
(@-intro)
(Bridge *)
$$
\text { (Bind } \downarrow \text {) }
$$

$$
\begin{gathered}
@_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B \\
\ell \wedge A \vdash @_{\ell} A \\
@_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge \bigotimes_{k^{\prime}} B \vdash @_{\ell}(A * B) \\
\vdash @_{j}(\downarrow \ell . B \leftrightarrow B[j / \ell])
\end{gathered}
$$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyBBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

$$
\begin{aligned}
& \text { (} K_{\odot} \text {) } \\
& \text { (@-intro) } \\
& @_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B \\
& \ell \wedge A \vdash @_{\ell} A \\
& \text { (Bridge *) } \\
& @_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge @_{k^{\prime}} B \vdash @_{\ell}(A * B) \\
& \text { (Bind } \downarrow \text {) } \\
& \vdash \varrho_{j}(\downarrow \ell . B \leftrightarrow B[j / \ell]) \\
& @_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge @_{k^{\prime}} B \vdash C \\
& k, k^{\prime} \text { not in } A, B, C \text { or }\{\ell\} \\
& @_{\ell}(A * B) \vdash C \\
& \text { (Paste *) }
\end{aligned}
$$

Axiomatic proof systems for $\operatorname{HyBBI}(\downarrow)$

Our axiom system $\mathbf{K}_{\text {HyвBI }(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

$$
\begin{aligned}
& \text { (} K_{\complement} \text {) } \\
& \text { (@-intro) } \\
& @_{\ell}(A \rightarrow B) \vdash @_{\ell} A \rightarrow @_{\ell} B \\
& \ell \wedge A \vdash @_{\ell} A \\
& \text { (Bridge *) } \\
& @_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge @_{k^{\prime}} B \vdash @_{\ell}(A * B) \\
& \text { (Bind } \downarrow \text {) } \\
& \vdash @_{j}(\downarrow \ell . B \leftrightarrow B[j / \ell]) \\
& @_{\ell}\left(k * k^{\prime}\right) \wedge @_{k} A \wedge @_{k^{\prime}} B \vdash C \\
& k, k^{\prime} \text { not in } A, B, C \text { or }\{\ell\} \\
& @_{\ell}(A * B) \vdash C \\
& \text { (Paste *) }
\end{aligned}
$$

Any $\mathrm{K}_{\mathrm{HyBB}(\downarrow) \text {-provable sequent is valid in all } \mathrm{BBI} \text {-models. }}$

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.
3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.
3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.
4. Now, if A is unprovable, $\{\neg A\}$ is consistent so there is an MCS $w \supset\{\neg A\}$. Then A is false at w in the canonical model, hence invalid.

Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.
3. Truth Lemma: A is true at w iff $A \in w$ for any formula A.
4. Now, if A is unprovable, $\{\neg A\}$ is consistent so there is an MCS $w \supset\{\neg A\}$. Then A is false at w in the canonical model, hence invalid.
(In our case, we also have to show that the canonical model is really a BBI-model.)

Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

If A is valid in the class of BBI-models satisfying $A x$, then it is provable in $\mathbf{K}_{\mathrm{HyBB}(\downarrow)}+A x$.

Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem Parametric completeness
If A is valid in the class of BBI-models satisfying $A x$, then it is provable in $\mathrm{K}_{\mathrm{HyBB}(\downarrow)}+A x$.

Corollary
By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection.

Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem Parametric completeness
If A is valid in the class of BBI -models satisfying $A x$, then it is provable in $\mathrm{K}_{\mathrm{HyBB}(\downarrow)}+A x$.

Corollary

By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection.
In particular, we obtain sound and complete proof systems for separation algebras.

Conclusion

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
- identification of decidable fragments;

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
- identification of decidable fragments;
- search for nice structural proof theories;

Conclusions and future work

- BBI is insufficiently expressive to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate naming machinery from hybrid logic.
- We have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for any separation theory from those we consider.
- Future work on our hybrid logics could include
- identification of decidable fragments;
- search for nice structural proof theories;
- investigate possible applications to program analysis.

Thanks for listening!

Draft paper available from authors' webpages:
雷
J. Brotherston and J. Villard.

Parametric completeness for separation theories.
To be presented at POPL'14.

Parametric Completeness for Separation Theories

Jules Villard

University College London
Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)

