
T

Présentée à
L’École Normale Supérieure de Cachan

en vue de l’obtention du titre de
Docteur en Informatique

H H

Soutenue le 18 février 2011 par
Jules V

● ●

devant un jury composé de :
Peter O’H rapporteurs
Nobuko Y
Cristiano C examinateur
Byron C président du jury
Étienne L directeurs
Alain F

Abstract

This dissertation is about the specification and verification of concurrent message-passing
programs that operate over a shared memory. In this setting, instead of copying messages
over channels, processes may exchange pointers into a shared memory where the actual con-
tents of messages lay. Channels are themselves objects in the memory (or heap) that can
be communicated, thus achieving full mobility. This flexible and efficient programming
paradigm must be used carefully: every pointer that is communicated becomes shared be-
tween its sender and its recipient, which may introduce races. To err on the side of caution,
the sender process should not attempt to access the area of storage circumscribed by a mes-
sage once it has been sent. Indeed, this right is now reserved to the recipient, who may
already have modified it or even disposed of it. In other words, the ownership of pieces of
heap hops from process to process following the flow of messages.

Copyless message passing combines two features of programs that make formal verifica-
tion challenging: explicit memory management and concurrency. To tackle these difficul-
ties, we base our approach on two recent developments. On the one hand, concurrent separa-
tion logic produces concise proofs of pointer-manipulating programs by keeping track only
of those portions of storage owned by the program. We use such local reasoning techniques
to analyse the fluxes of ownership in programs, and ensure in particular that no dangling
pointer will be dereferenced or freed at runtime. On the other hand, channel contracts, a
form of session types introduced by the S♯ programming language, provide an abstrac-
tion of the exchanges of messages that can be used to statically verify that programs never
face unexpected message receptions and that all messages are delivered before a channel is
closed.

The contributions contained in this dissertation fall into three categories. First, we give
semantic definitions to copyless message-passing programs, to the ownership transfers they
induce, and to channel contracts, and link the three together. In doing so, we provide the
first formal model of a theoretically significant subset of the S♯ programming language.
In particular, we show that some properties of channel contracts rub off on programs, which
justifies their use as protocol specifications. Second, we introduce the first proof system for
copyless message passing, based on separation logic and channel contracts. The proof sys-
tem discharges parts of the verification of programs on the verification of their contracts.
The marriage of these two techniques allows one to prove that programs are free from mem-
ory faults, race conditions, and message-passing errors such as unspecified receptions and
undelivered messages. Moreover, we show how the logic and contracts cooperate to prove
the absence of memory leaks. Third, we give an implementation of our analysis, Heap-Hop,

iii

that takes annotated programs as input and automatically checks the given specifications and
deduces which of the properties above are enjoyed by the program. Heap-Hop requires pro-
grams to be annotated with pre and postconditions for each function, loop invariants, and
the channel contracts that communications should obey.

iv

Contents

Abstract iii

Remerciements ix

Introduction 1
Table of notations . 8

1 Concurrency and Ownership 11
1.1 Concurrency and the heap . 11

1.1.1 Concurrent programs . 11
1.1.2 Race-free programs . 12
1.1.3 Synchronisation . 13
1.1.4 Ownership . 17
1.1.5 Memories . 19

1.2 Message passing . 20
1.2.1 Communication primitives . 20
1.2.2 Examples . 21
1.2.3 Design choices . 24
1.2.4 Problems of interest . 26
1.2.5 Encoding locks and message passing into one another 28
1.2.6 Further examples of message passing 29

2 A Model of Copyless Message Passing 31
2.1 Programming language . 31

2.1.1 H . 31
2.1.2 HMP . 33

2.2 Semantics . 34
2.2.1 States . 34
2.2.2 Notations . 35
2.2.3 Operational semantics . 36
2.2.4 Properties of the operational semantics 40

v

Contents

3 Dialogue systems 43
3.1 Communicating systems . 44

3.1.1 Definition . 44
3.1.2 Dialogue systems and contracts . 46
3.1.3 Semantics . 47
3.1.4 Safety properties . 48

3.2 Verification of communicating systems . 50
3.2.1 Simulation of a Turing machine by a dialogue system 50
3.2.2 A decidable class: half-duplex systems 53

3.3 Contracts . 54
3.3.1 Syntactic sufficient conditions . 54
3.3.2 Contract verification is undecidable 60

Conclusion . 62

4 Concurrent Separation Logics 65
4.1 Assertions . 65

4.1.1 Models . 65
4.1.2 Syntax . 66
4.1.3 Semantics . 66
4.1.4 Derived formulas . 67
4.1.5 Inductive predicates . 68

4.2 Proof system . 69
4.2.1 An extension of Floyd-Hoare logic 69
4.2.2 Small axioms . 69
4.2.3 Proof rules . 70
4.2.4 Conditional critical regions . 72

5 Proving Copyless Message Passing 77
5.1 Proof system . 77

5.1.1 Session states . 77
5.1.2 Assertions . 79
5.1.3 Rules for communication . 80

5.2 Examples . 85
5.2.1 Cell and endpoint passing . 85
5.2.2 Automatic teller machine . 88

5.3 Restrictions of the proof system . 92
5.3.1 Deterministic contracts . 92
5.3.2 Precision of message footprints . 93
5.3.3 Channel closure leaks . 93
5.3.4 Cycles of ownership leaks . 94
5.3.5 A first soundness result . 97

Related work . 98

vi

Contents

6 Open Behaviours and Soundness 101
6.1 Open states . 102

6.1.1 Well-formed open states . 102
6.2 Open operational semantics . 104

6.2.1 Open semantics of programs . 104
6.2.2 Subject reduction . 108

6.3 Soundness . 112
6.3.1 Locality up to interferences . 112
6.3.2 Soundness . 116

6.4 Properties of proved programs . 118
6.4.1 From open states to closed states 118
6.4.2 Runtime validity . 119
6.4.3 Owned portion of a state . 122
6.4.4 Leak freedom . 123
6.4.5 Boundedness of communications and deadlock-freedom 125

7 Heap-Hop 127
7.1 Input . 127

7.1.1 Programming language . 127
7.1.2 Contracts . 129
7.1.3 Logical fragment . 130

7.2 Internals . 131
7.2.1 Verification condition . 131
7.2.2 Symbolic execution . 133
7.2.3 Entailment checking and frame inference 136
7.2.4 Contract verification . 136

7.3 Output . 137
7.3.1 Properties of the contracts . 137
7.3.2 Hoare-triple verification . 137

7.4 Distribution . 138
7.4.1 Public distribution . 138
7.4.2 Case studies . 139

Conclusion 143

vii

Remerciements

Ma gratitude va en premier lieu à Étienne Lozes, qui a encadré mes travaux avec enthousi-
asme, gentillesse et rigueur scientifique. Merci pour ta disponibilité sans faille. Je remercie
également Cristiano Calcagno, qui a guidé mes premiers pas dans le domaine de la logique
de séparation, et qui a donné le point de départ de cette thèse. Je remercie Daniel Hirschkoff
pour avoir parrainé ma vie scientifique, et Alain Finkel pour avoir dirigé ma thèse.

Je remercie toutes les autres personnes avec qui j’ai eu l’occasion de parler de science
pendant ma thèse, et qui m’ont encouragé à continuer : Benedikt Bollig, Steve Brookes, Luis
Caìres, Byron Cook, Dino Distefano, Rob Dockins, Mike Dodds, Philippa Gardner, Maurice
Herlihy, Aquinas Hobor, Florent Jacquemard, Peter O’Hearn, François Pottier, Hugo Torres
Vieira, Ralf Treinen, Viktor Vafeiadis, Hongseok Yang, Nobuko Yoshida et bien d’autres.

Merci à tout le LSV (Renaudeau et Iris représentent !) pour m’avoir fourni un accueil
chaleureux, des voyages scientifiques épanouissants, et un environnement de travail stimu-
lant.

Big up aux Gawky : Flutch, Nicolas et Oanig, et aux geeks de ♯sos : bgoglin, Dain,
GruiicK, iderrick, julio, Louloutte, mandos, mrpingouin, nanuq, Nimmy, proutbot, stilgar,
TaXules, tonfa, Vinz, youpi. Merci surtout à ceux qui ont contribué à rendre moins aride la
traversée de la thèse : Amélie M., Arnaud D., Arnaud S., Delphine L., Günther S., Juliette
S., Miles A., Mouchy, Philippe P., Sylvain S., j’en passe et pas des pires.

Je remercie enfin Jade, mes parents, et ma famille, pour tout ce qu’ils m’ont apporté.

ix

Introduction

Modelling and verification of message-passing programs

The formal verification of programs strives to ensure, with the certainty of a mathematical
theorem, that programs do what they were conceived to do. Programs do not always behave
as desired, as one may experience in its everyday interactions with computers: sometimes
they crash, or produce unexpected results. What is a mere annoyance on a home computer
can have dramatic consequences for more sensitive programs. For instance, in 1996, the
Ariane 5 spatial rocket exploded in the atmosphere due to an integer overflow present in
its code. Despite careful examination by engineers, the anomaly went undetected, whereas
formal methods could have been applied to prevent it.

Formal methods allow one to go beyond naive testing of programs. Indeed, tracking
errors down by means of testing involves making sure that a program will behave correctly,
whatever its input. Unfortunately, the number of situations that a program can run into is
most of the time virtually infinite. Thus, empirically testing the conformance of a program
against a certain specification by running it against each possible configuration of the system
cannot be done in any reasonable amount of time.

On the other hand, if one is given a mathematical model of what the program does and a
mathematical model of its specification, one can try and formally verify that there is a match
between the two. Thus, one can provide a mathematical proof of a program’s correction,
which amounts to having successfully tested this program against all possible inputs.

Amongst the programs that one may wish to formally verify, concurrent ones make for
especially challenging problems, while coincidentally being the ones most in need of for-
mal methods of verification. Concurrent programs are already numerous, and their num-
ber is bound to grow in the future. Indeed, due to a shift in the consequences of Moore’s
law (which states that the number of transistors that can be placed on an integrated cir-
cuit doubles approximately every year) recent years have seen a proliferation of computers
containing more and more processors and cores capable of running in parallel, a charac-
teristic that was previously the privilege of specialised, high performance computers. As
a result, programs are also forced to become parallel to take advantage of the increase in
available computing power, instead of merely relying on the frequency of single processors
to increase.

1

Introduction

Yet, concurrent programming is still, after decades of research on the subject, a compli-
cated matter. Whenever several processes interact towards a common goal, the number of
ways they have of misbehaving skyrockets. Worse, the errors they make may depend on
subtle timing issues between the actions of each process. This makes them hard to detect
and reproduce using traditional debugging tools, especially since merely trying to observe a
problem may hide it away. Formal methods have thus an important role to play in verifying
concurrent programs.

Finally, it is worth mentioning that designing the models that form the basis for formal
verification is often a difficult task in itself. This is particularly true in the concurrent setting
where the effect of interactions has to be carefully taken into account.

In this thesis, we are interested in the formalisation and formal verification of message-
passing programs. Our goal is to define a realistic model of a particular class of such pro-
grams and to analyse some of their properties in a manner that is suitable to some level
of automation. Amongst the many properties that one may wish to establish for message-
passing programs, we have chosen to focus on those which ensure that a program never
goes wrong, that is in safety properties.

Copyless message passing

Parallel programs, in all generality, need means to synchronise and communicate with each
other. Message passing is a theoretically elegant tool to achieve this: if a process wishes to
communicate a value, it sends it to another process; if two processes should wait for each
other before advancing further, they may exchange messages and wait for corresponding
acknowledgements.

The relative simplicity of the message passing paradigm, while helping in writing concep-
tually simpler code, usually comes with a cost in efficiency, as this programming paradigm
is quite remote from the inner operations of a machine. This may explain why more basic
primitives like spin-locks, semaphores, or even memory barriers, have often been favoured
in programming languages, although they are arguably more error-prone than message pass-
ing for the programmer.

However, message passing can also be an efficient programming paradigm, as has been
demonstrated by Singularity. Singularity [HL07] is a research project and an operating
system written from the premise that one may replace hardware memory protection mecha-
nisms by systematic static analysis of programs’ source code on the one hand, and dynamic
checking at runtime on the other hand which, together, ensure strict isolation between pro-
cesses. Indeed, Singularity can safely run processes sharing a single address space without
hardware memory protection. Executable programs are compiled from the S♯ program-
ming language, derived from C♯, which supports an efficient form of message-passing prim-
itives described below.

In S♯, the contents of messages reside in a portion of the memory that is shared by all
the processes. Thanks to this, a process wishing to send a message can avoid copying its
contents over the channel, and instead send a mere pointer to the location of the message’s
contents in memory. When a process receives such a pointer, it gains the ability to access

2

Introduction

the contents of the message. In effect, the sender and the recipient of a message located in
memory are sharing this piece of memory and one has to be careful to avoid some of the
drawbacks of shared-memory communications, such as race conditions. The communica-
tions of S♯ are in fact an example of copyless message passing, which constitute the
main interest of this thesis.

In this thesis, we will explore one means of ensuring statically (and automatically to
some extent) that programs communicating via copyless message passing do not encounter
memory faults by requiring that a process sending a message loses its access right over
its contents: this right is transferred to the receiving process. This condition is sufficient
to ensure the absence of race conditions between processes. Moreover, we will insist on
communications being ruled by channel contracts. As we will see, this reduces the check-
ing of certain communication errors in programs to an analysis of their channel contracts,
which are much easier to reason about. Our programming language features asynchronous,
bidirectional FIFO (first-in first-out) channels, each made of two endpoints; endpoints are
themselves exchangeable over channels (in fact, they are allocated on the heap, like regular
memory cells). Our verification technique will be a program logic that builds on the ideas
of local reasoning.

Local reasoning

Since copyless message passing assumes a shared memory between processes, any verifica-
tion technique aiming at proving the correctness of programs using this paradigm will have
to be able to cope with the memory (also referred to as the heap). Reasoning about memory-
manipulating programs has long stood up as a difficult topic in the area of the formal veri-
fication of programs, which is mainly attributable to aliasing: in a heap-manipulating pro-
gram, the same memory location may be accessed through multiple program variables (all
containing this location as value). Whenever the contents of the memory at this location
changes, the update should be visible for all the processes that may access it through one
of these variables. From a verification standpoint, this usually means that one has to keep
track of all the ways a memory location could be aliased. Aliasing makes reasoning about
memory-manipulating programs global in that sense, which results in tedious proofs at best,
if one indeed dares to go and prove such programs in such a way [Bur72, Bor00].

Separation logic [IO01, Rey02], which is derived from the logic of Bunched Implica-
tions [OP99] and extends Floyd-Hoare logic [Hoa69, Flo67], was proposed as a way to
reason about such programs while avoiding the pitfalls that result from the tedious book-
keeping of aliasing constraints. The reasoning induced by separation logic is rooted in the
following local reasoning idiom, defined as such by O’Hearn et al. [ORY01]:

To understand how a program works, it should be possible for reasoning and
specification to be confined to the cells that the program actually accesses. The
value of any other cell will automatically remain unchanged.

Separation logic takes advantage of this idiom by maintaining assertions only about the
portion of the heap that a program knows it will be the only one to access at this point in the

3

Introduction

execution, what it owns in a sense, in contrast to what it can access. This form of reasoning
supposes that, in O’Hearn’s words, “processes mind their own business” and typically gives
rise to more concise proofs than those obtained by keeping track of aliasing constraints.

Moreover, local reasoning proved to be an elegant tool for reasoning about concurrent
programs as well, provided that a clean separation between what is owned by each process
can be established at any point in time. This can benefit the analysis of copyless message-
passing programs. Indeed, the ownership reading of the heap allows us to translate our
discussion about the transfer of the “right” to access the memory cells corresponding to the
contents of a message into the following argument: whenever a process sends a message, it
loses ownership of that portion of memory corresponding to the contents of the message;
conversely, when a process receives a message, it gains ownership of that portion of mem-
ory. This form of ownership transfer prevents the overlapping of areas of memory that are
owned by different processes at a given time: ownership of pieces of heaps hop from one
process to another following the flow of messages.

Channel contracts

The message passing paradigm is not without its own pitfalls: for instance, it can introduce
deadlocks in programs, when two processes each wait for the other to send a message, or
communication errors, when an unexpected message is sent on a channel or when a channel
is closed with undelivered messages still in its buffers. Moreover, the programmer may wish
to export the protocol that is used on a particular channel, for instance for others to use as an
interface to its program. To address some of these issues, Singularity introduced contracts,
which are communicating automata used to specify such protocols. Contracts also allow
the S♯ compiler to statically verify some interesting properties about communications
(which sometimes have to be double-checked at runtime in their case), for instance the ab-
sence of deadlocks on a single channel, or the existence of a bound on the number of pending
messages. Their authors make the following appealing claim of modularity [FAH+06]:

The channel contracts provide a clean separation of concerns between interact-
ing components and help in understanding the system architecture at a higher
level.

Contracts are part of our framework as well: our logic tries to prove a given program cor-
rect with respect to certain contracts, while these contracts are analysed separately. We were
able to formally establish that good and bad properties of contracts sometimes rub off on the
programs that implement them. Moreover, including contracts gave us the opportunity to
formalise the ideas implemented by the Singularity Operating System (such a formalisation
was not provided by their authors). We believe we have achieved such a “clean separation
of concerns” in our approach.

4

Introduction

Automation

Reasoning about programs that are concurrent and have direct access to the heap is chal-
lenging. Combating the complexity of such reasoning with local reasoning and compo-
sitionality makes for simpler proofs of programs. Yet, as we are interested in verifying
concurrent, memory-manipulating programs (without first abstracting their behaviour by
casting them into models more amenable to other verification techniques like finite model-
checking [CES86]), the vast majority of properties this thesis tries to establish about pro-
grams are undecidable ones. Nevertheless, being able to give (arguably) simple, human-
understandable proofs of programs supports the hope that these proofs may be automated,
at least to some extent. Indeed, one may circumvent this issue and write automatic tools
nonetheless either by helping the tool (for instance with program annotations), or by means
of abstractions (for instance, by using an abstract domain of formulas, as in the Space In-
vader tool [DOY06], over which abstract interpretation techniques [CC77] can be applied).
In this thesis, we have taken the first approach and use annotated programs as input for our
Heap-Hop tool.

Contributions

Let us now present the contributions of this thesis, which are threefold.
Firstly, we propose a modelling of a programming language which, without being full-

fledged, contains all the message-passing primitives needed for copyless message passing,
and is already sufficiently rich in features to expose the intricate verification issues which
follow from this paradigm. This modelling itself has three components:

• An operational semantics for programs in which messages are pure values. This se-
mantics does nothing to explicitly track the ownership of each memory cell, variable
and channel endpoint. However, as our analysis strives to eliminate them, racy pro-
grams, which perform simultaneous accesses to the same variable, memory cell or
endpoint without proper synchronisation (resulting in a race), are forced to fault.

• A formalisation of contracts in terms of communicating finite states machines, a well-
known model of communications.

• A second operational semantics for programs where messages carry the pieces of
states whose ownership they are meant to transfer (in addition to their values), and
where channels are associated to contracts. Although its main purpose is to help us
prove the soundness of our logic, this second semantics also highlights the impact
that contracts have on the verification of programs. Indeed, we connect this second
semantics both to the first operational semantics of programs and to the semantics of
contracts.

Secondly, we provide a proof system for copyless message passing programs with con-
tracts based on separation logic. The logic discharges parts of the verification of the program

5

Introduction

on the verification of its contracts, thus realising the claim made by Singularity that con-
tracts should provide a “clean separation of concerns” between the different aspects of the
verification of copyless message passing programs. Our analysis can prove in particular
that a program causes no memory fault or leak, has no race condition, and that channel
communications are safe from both unspecified receptions and undelivered messages.

Thirdly, we have developed a tool, Heap-Hop, that takes annotated programs as input and
automatically answers whether its specification is correct or not using our logic, and whether
it enjoys the properties mentioned above. The logical fragment manipulated by Heap-Hop
makes the entailment problems between formulas decidable while being powerful enough
to permit symbolic execution.

Our proof system was first presented in the APLAS conference [VLC09], with a different
proof of soundness based on abstract separation logic, a framework for proof systems based
on separation logic. Heap-Hop was first presented at the TACAS conference [VLC10]. The
formalisation of contracts, the modelling of the programming language and the proof of
soundness presented here are original to this thesis.

Related work

Program verification is too vast a domain of computer science to be faithfully surveyed in
this introduction. Let us compare the work presented in this thesis with existing litera-
ture on domains related to each of the three contributions pointed out above: modelling of
message-passing programs and systems, proof systems for concurrent program verification,
and automated verification of message-passing programs.

The literature on the modelling of message-passing concurrency is rich to say the least,
and has spawned a variety of models, from communicating automata and process algebras
to game semantics. The behaviours of these systems have themselves been studied using
other models, such as message sequence charts or Mazurkiewicz traces [Maz86]. Models
that belong to the family of process algebras are often derivatives of either the calculus of
communicating systems (CCS), the pi-calculus (both introduced by Milner [Mil80, Mil99]),
or Hoare’s communicating sequential processes [Hoa78] (CSP). Hoare and O’Hearn have
defined a denotational semantics for a message-passing programming language (close to
CSP) with dynamically allocated channels [HO08]. Yet, very few other models of message-
passing concurrency, if any, include simultaneously a tractable and realistic model of the
heap. None of them are able to model storable channels or contracts in a natural fashion.

Recent progress has been made in the verification of communicating automata, our model
of contracts. Our analysis shares many concerns with the recent work of Stengel and Bul-
tan, who have also studied the contracts of S♯ in a formal setting [SB09], albeit not
relating them to a general model of message-passing programs. A cousin of our analy-
sis of communications is the type system of Takeushi et al. [THK94, HVK98] for a pro-
cess algebra derived from the pi-calculus, which describes channel protocols using session
types, and has been the starting point of a rich and growing literature. In particular, session
types can be used to describe asynchronous communications between any number of partic-
ipants [HYC08] (whereas this thesis focuses on the binary case) and to capture event-driven

6

Introduction

programming [HKP+10]. Finally, our own analysis of contracts has many roots in the study
of half-duplex communicating automata by Cece and Finkel [CF05]. None of these models
apply to heap-based communications, and in particular to our model of storable channels.

In the domain of proof techniques for copyless message passing, the logic of Bell et
al. [BAW10], that also extends separation logic with copyless message passing, is very
close to our own. Their proof system is however only concerned with proving the safety of
programs with respect to memory faults, and as such do not include a treatment of contracts.
We discuss the relationship between our logic and theirs in more details on page 98. Among
the numerous extensions of concurrent separation logic, two in particular resemble our own.
Firstly RGSep [VP07, Vaf07], which applies ideas of rely/guarantee [Jon83] to separation
logic in order to obtain compositional proofs of concurrent programs communicating via
shared memory. Secondly, the logic for storable locks of Gotsman et al. [GBC+07], whose
aim is to handle dynamically allocatable locks, much like we extend separation logic to
handle dynamically allocatable channels. A comparison between our work and these logics
(and in their proofs of soundness) can be found in Chapter 6.

Finally, as far as automatic tools are concerned, the S♯ compiler also operates in a
setting with copyless message passing and contracts. In fact, the language we consider
is directly inspired by S♯. However, their compiler delegates parts of the verification
to the runtime, whereas we strive to keep the verification entirely static. Moreover, no
formal study of their analysis has yet been published. Another neighbouring tool is Chal-
ice [LM09, LMS10], which is capable of verifying programs (written in a variant of C♯)
communicating via asynchronous unidirectional channels. However, the Chalice tool lacks
support for contracts and different message tags. As a result, each channel may only be used
to transport one particular type of value, whereas channels in our model may carry different
types according to the current protocol state of the channel. On the other hand, Chalice is
capable of analysing communications so as to prevent deadlocks [LMS10], which Heap-
Hop does not not currently support. Similarly, the S J language [HYH08] is an
extension of J which verifies channel communications specified using session-types.
Programs are typed using an analysis that concentrates purely on ensuring the safety of
communications. Finally, the Spin model-checker [Hol97] is capable of analysing programs
communicating via asynchronous or synchronous channels. The last two tools have only
naive models of the heap, which would surely impair the verification of copyless message-
passing programs.

There are few other tools capable of analysing communicating systems. The TReX
tool [ABS01] analyses timed automata that manipulate counters and communicate via lossy
FIFO channels. Lossy channels may non-deterministically lose some of the messages that
are communicated over them, and form a class of systems easier to analyse than perfect
channels [CFI96]. McScM [HGS09] (model-checker for systems of communicating FIFO
machines), on the other hand, is capable of analysing automata communicating via asyn-
chronous and reliable FIFO channels. Both of these tools drift away from programming
languages to concentrate on communicating automata, and are thus more comparable to the
analysis that Heap-Hop performs on contracts. They are more involved in that respect, as
they focus on semantic properties of systems whereas Heap-Hop merely perform syntactic
checks on contracts from which one can deduce the semantic properties of their behaviour.

7

Introduction

Outline

The outline of the rest of the manuscript is as follows.

Chapter 1 This chapter informally motivates the design choices of our message-passing
programming language, and presents the main verification questions that this thesis
will address.

Chapter 2 This chapter gives a formal syntax and operational semantics to our copyless
message-passing programming language.

Chapter 3 In this chapter, the focus is on the semantics and properties of contracts. Since
some aspects of the verification of programs boil down to checking properties of their
associated contracts, as we show in the following chapters, the decidability of various
contract properties is investigated.

Chapter 4 This background chapter presents existing concurrent separation logics.

Chapter 5 In this chapter, we introduce our extension of separation logic to copyless mes-
sage passing and discuss how to prove a few key examples.

Chapter 6 This technical chapter presents a second, open semantics for our programming
language and produces the soundness proof for our logic: proved programs are shown
to respect ownership of resources, to abide by their contracts, and thus to communi-
cate in a safe way if their contracts so guarantee.

Chapter 7 This chapter presents our automatic proof tool: Heap-Hop.

Table of notations

The notations used throughout the thesis are grouped in Table 0.1.

8

Introduction

Symbol Denotation
∅ empty set
N the set of natural numbers
Z the set of integers

i, j, n,m integers
w word

α,β buffer contents
␣ empty word or queue

x,y,e,f,… variables
E program or logical expression
B boolean program expression
c command
g guarded external choice
p program
v value
ε endpoint address
σ closed program state
s stack
h cell heap
k closed endpoint heap
M CFSM
S system of CFSMs
C contract
D dialogue system
q control state of a CFSM
C configuration of a CFSM

a, b, c, cell,fin, . . . message identifiers
σ̇ idealised local state
k̇ idealised endpoint heap

φ,ψ formulas
γ invariant or footprint
Γ footprint context
σ open state
k open endpoint heap

Table 0.1: Notation used in the typescript.

9

C

Concurrency and Ownership

1.1 Concurrency and the heap

1.1.1 Concurrent programs

A concurrent program can be described by a collection of processes (or threads) executing
simultaneously. Each process consists of a sequence of instructions, and simultaneity is
meant in a loose way; it may occur for a number of reasons, including the following ones:

• the processes are executed on different machines;

• the processes are executed on different processors of the same machine;

• the processes are executed on different cores of the same processor;

• the processes are executed on a single core, together with a scheduler that decides of
an interleaving of the instructions of each process;

• any combination of the above.

In general, processes execute independently (for instance, unrelated user applications on
a desktop computer), meaning that all the data they manipulate, have manipulated in the
past, or will manipulate in the future live in disjoint areas of the memory.1 Processes may
also need to share or exchange data, and this is of course when interesting things happen.
Inter-process communications mostly happen via shared portions of states, message passing,
or variations of one of these two paradigms (for instance remote procedure calls, akin to
message passing). We call resource a shared variable or portion of memory.

The rest of this section is devoted mainly to a survey of shared-variable concurrency for
heap-manipulating programs. This will be useful in the rest of the thesis to be able to com-
pare our analysis for message passing with existing ones for shared-variable concurrency.

1In the low-level details of operating systems, there may be some sharing even in this case, for instance via
dynamically linked shared libraries or system calls. When specifying and verifying user-level code, we
assume that the underlying operating system is sufficiently well-behaved that we can safely elude these
details.

11

1.1. Concurrency and the heap

1.1.2 Race-free programs

A race condition occurs whenever there are at least two simultaneous accesses to a shared
resource that are not protected by any synchronisation primitive (such as a lock), and at
least one of them is a write. A program whose executions may exhibit a race condition is
called racy, and race-free otherwise. More precisely, two threads or processes are in a race
condition if they simultaneously try to access the same resource, and if at least one of them
is trying to write to the resource. This is most of the time considered as an error. Indeed, the
outcome of races is not deterministic as it may not even correspond to one of the outcomes
produced by interleaving the instructions of the two culprit processes. This makes them
very hard to detect and reproduce using traditional debugging tools. This also complicates
considerably the definition of the semantics of programs; in particular, the semantics of the
parallel composition of two programs becomes unclear in the presence of races.

Racy programs Races often result in undesirable behaviours, for instance reading an
incoherent value because another thread is writing to it, or eventually storing a scrambled
value because of two simultaneous writes to a resource (this can happen when writes are
not atomic, for instance when writing a 64-bit long word to a memory where the writing
unit is 32 bit). Worse is the case of weak-memory models, in which the semantics of racy
programs depend on the architecture: to determine the exact outcome of a race, it could
be necessary to model the effect of all caches, store buffers, and other abstruse features of
such architectures. Thus, races violate the atomicity of accesses to a resource: one cannot
assume, in a racy execution, that accesses to a resource respect a certain order.

From a higher-level perspective, for instance in object-oriented programing where re-
sources may be objects composed of several memory blocks and methods to operate on
them, atomicity violations may put a resource in an incoherent internal state. Usually, each
process assumes the shared resource to be in a certain state, to respect a certain invariant,
and it could be the case that one process reads the contents of the resource while it is being
manipulated by a second process that has temporarily put the resource into an inconsistent
internal state.

Another case of erroneous racy execution occurs when the flow of a program is inter-
rupted by another program in a piece of code that was meant to be executed atomically by
the programmer, but was left unprotected. Consider the program of Figure 1.1, where two
non-atomic increments of a shared variable x are performed in parallel and result in a race.

At the end of the execution of this program, one could expect the value of x to be 2, as
it would be the case with two increments ordered in sequence. However, in a concurrent
setting, the final result can also be 1, as exhibited by the interleaving drawn in Figure 1.1:
the first thread is scheduled first, but is interrupted after the line y = x + 1. At this point,
the second thread starts and is executed entirely. Now x, y and z all hold 1. The first thread
is finally allowed to finish, and writes again 1 to x, hence the overall effect has been to set
x to 1 instead of 2.

More generally, races make apparent the level of atomicity (or granularity) of programs
and even of basic instructions; in their presence, one has to precisely state what is guaranteed
to execute without interruption.

12

Chapter 1. Concurrency and Ownership

.. x = 0;

⎛
⎜⎜⎜⎜⎜⎜
⎝

local y;

.. y = x + 1;

.. x = y;

⎞
⎟⎟⎟⎟⎟⎟
⎠

∥

⎛
⎜⎜⎜⎜⎜⎜
⎝

.. local z;

z = x + 1;
.. x = z;

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Figure 1.1: Two unprotected increments in parallel and an interleaving which leads to the
final state x = 1.

Of course, not all races are bugs: some programs are designed to be racy for efficiency
purposes, and much care is given to ensure that these races will not affect the program badly.
Yet, even in these cases, races are limited to instructions that are known to execute atomi-
cally, like compare-and-swap or test-and-set: these programs are closer to non-blocking or
fine-grained concurrent programs than to truly racy ones. Programs of this sort are nonethe-
less very hard to get right, let alone formally verify. The book The Art of Multiprocessor
Programming by Herlihy and Shavit [HS08] provides insights on the subject. Vafeiadis
describes how to formally prove some of them in his thesis [Vaf07].

Race-free programs On the other hand, race-free programs (programs without race con-
ditions) have several advantages that make them attractive for programmers and easier to
verify. In particular, as Reynolds points out [Rey04], their semantics is grainless: one
does not have to take the precise atomicity of primitive commands into account to give a
semantics to race-free programs, and an interleaving semantics suffices to account for con-
currency. Moreover, race-freedom allows one to elude the details of the memory model, as
it restores sequential consistency (the fact that only those outcomes obtained by an inter-
leaving of the executions of the processes are observed [Lam79]) on weak architectures.2

1.1.3 Synchronisation

If one wants to eliminate race conditions, one has to regulate access to resources. For in-
stance, for the program of Figure 1.1, one has to protect the increment of x so as to prevent
interferences from other threads. In other words, one has to ensure mutual exclusion be-
tween the accesses to x: no two threads may be accessing x at the same time when one
of them is writing to it. To this end, one usually uses either locks or conditional critical
regions.

Conditional critical regions Conditional critical regions (CCR), or monitors or Hoare
monitors, are pieces of code that may be executed only when a specific resource is held.
This ensures mutual exclusion between the CCRs guarded by the same resource. Resource

2This is a theorem of the folklore known as the data-race-free guarantee [AH90], which has been formally
proved to hold for many existing architectures recently [Alg10, BP09, OSS09].

13

1.1. Concurrency and the heap

declarations and usage are syntactically scoped. Using resources, we can write a correct,
race-free version of our example:
resource r in {

x = 0;

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

local y;

with r {
y = x + 1;
x = y;

}

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∥

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

local z;

with r {
z = x + 1;
x = z;

}

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

}
Or more concisely, writing x++ for x = x + 1:
resource r;
x = 0;
with r { x++; } ∥ with r { x++; }

All the executions of the program above are race free and give a final value of 2 for x.

Deadlocks Although they may be used to prevent races, conditional critical regions can
themselves introduce errors in the form of deadlocks (as in fact any means of synchroni-
sation between programs). A deadlock arises when two or more processes are waiting for
each other to take a step in a cyclic fashion (for instance, processA is waiting for processB
to take a step, while B itself is waiting for A). As neither of them can make any progress,
they are stuck forever. Deadlocks can occur as soon as one has the ability to use nested
CCR. Consider the following example:
with r1 { with r2 { skip }} ∥ with r2 { with r1 { skip }}

Suppose now that the process on the left successfully enters the first critical region corre-
sponding to r1 before being interrupted. The second process can then enter its first critical
region corresponding to r2 which has not yet been claimed by the first process, but cannot
enter the next one corresponding to r1. The first process is now stuck as well, and in fact
the whole program is stuck in a deadlock.

The usual solution to avoid this kind of deadlocks is to assume an order that must be
followed whenever a process acquires resources, for instance that one should never attempt
to acquire r2 before r1. This would forbid the problematic program above.

Locks Locks can simply be viewed as monitors where the beginning and end of criti-
cal regions are no longer statically determined, but are instead made operationally explicit
through the operations acquire(l) and release(l), where l is a lock identifier. In this
sense, they are more general and allow more complex behaviours than monitors. Moreover,
in most settings, one can dynamically allocate new locks on the heap, and hence have an
unbounded number of them, which complicates the analysis. On the other hand, this al-
lows fine-grained synchronisation, for instance by associating each node of a linked list to
a different lock, and then manipulating the list concurrently with an hand-over-hand lock-
ing scheme [HS08]. Although seemingly more complex, some of these programs are also

14

Chapter 1. Concurrency and Ownership

amenable to compositional reasoning with separation logic, for instance using the work of
Gotsman et al. [GBC+07], or the marriage of rely-guarantee reasoning with separation logic
of Vafeiadis and Parkinson [VP07].

In the parallel increment example, one could rewrite each side of the parallel composition
using locks to protect the increments (assuming a previously declared lock l), although
monitors are sufficient, as seen above:

acquire(l);
x++;
release(l);

Signals Another reading of locks is as wait and signal primitives: acquiring a lock is
similar to waiting for this lock to be free, and releasing it is similar to signaling whomever
is waiting for it that it is now free. Signals are similar to locks in this regard, but they may
get lost when nobody is waiting for them.

Signals are used through two primitives: signal and wait. They take as argument an
identifier, much as CCR and locks do. When calling wait(c), a process is put to sleep until
another process calls signal(c). Signals that were issued while nobody had been waiting
for them are discarded, so the moment at which signals are fired can be crucial.

Let us illustrate this definition with the producer-consumer problem, a classic problem
in concurrency. The scenario is as follows: two processes share access to a finite buffer in
memory. One of them, the consumer, pops elements from the buffer while the other, the
producer, puts new elements into it. The consumer process should not attempt to receive
from the buffer if it is empty, nor should the producer process try to enqueue something if
the buffer is already full. To avoid these situations, they must synchronise.

A solution with two signals, non_empty and non_full, is presented in Figure 1.2.
The example assumes that the buffer can be accessed through the pushbuffer(x) and
x = popbuffer() operations, that respectively enqueues the value of x into the buffer and
dequeues the first value in the buffer and stores it into x. The producer can choose a new
value to enqueue using any function produce_item (provided that this function does not
introduce bugs of its own, or attempts to wait or signal non_empty or non_full). The
capacity of the buffer is BUFFER_SIZE, and the number of items currently in the buffer is
items (initially 0).

This implementation may deadlock, as a result of the following race condition between
the producer and the consumer. Suppose that the consumer process notices that the buffer
is empty and gets ready to sleep; but before the wait(non_empty) command is issued, the
producer process is scheduled and makes a whole pass: it enqueues an item, increments
items, and, seeing that the buffer is empty, signals the consumer. However, since the con-
sumer has not yet gone to sleep, the signal is lost forever; the consumer will then call sleep,
never to be awaken by the producer. What can only happen then is that the producer fills
up the entire buffer and puts itself to sleep. Both processes are now waiting for each other
to issue a signal; they are deadlocked.

Using conditional critical regions instead of signals, one can write the simpler solution
depicted Figure 1.3. This solution is race and deadlock free and even avoids the race not

15

1.1. Concurrency and the heap

Consumer code:
while (true) {

if (items == 0)
/* the buffer is empty, wait */
wait(non_empty);

x = pop_buffer();
items--;

if (items == BUFFER_SIZE - 1)
/* the buffer was full but is not anymore */
signal(non_full);

/* do something with x */
}

Producer code:
while (true) {

if (items == BUFFER_SIZE)
/* the buffer is full, wait */
wait(non_full);

x = produce_item();
push_buffer(x);
items++;

if (items == 1)
/* the buffer was empty but is not anymore */
signal(non_empty);

}

Figure 1.2: A solution to the producer-consumer problem using signals, with a potential
deadlock.

mentioned above between the items++ and items-- instructions, that the astute reader
may have noticed in Figure 1.2.

Readers-writers problem Before closing this section, let us present another classical
problem, that embodies another kind of concurrency idiom: the readers-writers problem.
This problem consists in orchestrating accesses to a shared portion of state that some pro-
cesses (the readers) wish to read, while others (the writers) wish to write. To avoid races,
only other readers may access the shared state when it is being read, and nobody can access
it when it is being written.

A solution with two locks is presented Figure 1.4. Note that, contrarily to the producer-
consumer problem, any number of processes executing the code for readers can run in par-
allel with any number of processes executing the code for writers. This solution is race
and deadlock free, but exhibits a new kind of misbehaviour: it can be the case that readers

16

Chapter 1. Concurrency and Ownership

Consumer code:
while (true) {

with buf when (items > 0) {
x = pop_buffer();
items--;

}
/* do something with x */

}

Producer code:
while (true) {

with buf when (items < BUFFER_SIZE) {
x = produce_item();
push_buffer(x);
items++;

}
}

Figure 1.3: A solution to the producer-consumer problem using CCR.

Reader code:
while (true) {

acquire(r);
readers++;
if (readers == 1)

acquire(w);
release(r);

/* read here */

acquire(r);
readers --;
if (readers == 0)

release(w);
release(r);

}

Writer code:
while (true) {

acquire(w);

/* write here */

release(w);
}

Figure 1.4: A solution to the readers-writers problem using locks.

keep on interleaving their reads while never releasing the writing lock w, thus preventing the
writers processes to ever execute. One should thus modify this program to ensure a fairness
condition that forbids such executions. This progress property is one of liveness (“some-
thing good eventually happens”), as opposed to the problems described before, which were
all about safety properties (“something bad should never happen”). This thesis will only be
about safety properties.

1.1.4 Ownership

One way to distinguish between racy and race-free programs is to see racy programs as
those violating the following ownership hypothesis, as formulated by O’Hearn in the paper
“Resources, concurrency and local reasoning” [O’H07]:

Ownership Hypothesis A code fragment can access only those portions of
state that it owns.

17

1.1. Concurrency and the heap

In this hypothesis, a portion of state contains variables and memory locations and “own”
means either that the program has shared access to it if it only ever reads from it, or exclusive
access if it writes to it. It should not be confused with the portion of state reachable from
the program variables: it can be a mere fraction of it, or even contain unreachable locations
(which is usually a sign that the program has a memory leak: it is in charge of a part of the
memory that it is unable to access). One can imagine each variable and memory location
to be decorated with the identifier of the process (or processes) that owns it, and that a
process accessing a cell that it does not own provokes a runtime error. If all processes
abide by the ownership hypothesis, they will never run into such an error. Of course, this
decoration should only be, to paraphrase O’Hearn, “in the eye of the asserter”: in reality, it
has no operational meaning. It is a useful proof artifact nonetheless. We shall give formal
definitions of these concepts in Chapters 4 and 6.

If all the components of a program respect the ownership hypothesis, then the following
separation property (from the same paper by O’Hearn) holds, where one can think of a
grouping of mutual exclusion as a particular lock or critical region identifier:

Separation property At any time, the state can be partitioned into that
owned by each process and each grouping of mutual exclusion.

A crucial concept of the ownership reading of the heap is that the partition of the state
described by the separation property is not fixed, but rather can dynamically change through-
out the execution of the program. Theses changes occur either when a process allocates or
deallocates portions of the state that it owns, or at synchronisation points. Thus, acquiring a
lock or a resource results in taking ownership of the portion of state attached to it and adding
it to the portion of state owned by the process. Symmetrically, releasing a lock or exiting a
critical region corresponds to gouging a portion of the owned state of the process to give to
the corresponding resource. As we will see in this thesis (and especially in Chapter 5), the
same reading can be given for message passing: sending a message corresponds to a loss
of ownership, and receiving a message corresponds to a gain.

The idea that one should be able to attribute each memory location to at most one process
at a time can also be found in the very design of the Singularity OS [HL07]. Each Singu-
larity process owns a portion of the state that is called local to the process and that can only
be accessed by it or be given back to the operating system. In particular, local states cannot
be shared between processes. Memory locations that are destined to navigate between pro-
cesses are allocated in the exchange heap. Its functioning is described as such in the paper
“Language support for fast and reliable message-based communication in Singularity OS”
by Fähndrich et al. [FAH+06], where Singularity channels are introduced:

Although all processes can hold pointers into the exchange heap, every
block of memory in the exchange heap is owned (accessible) by at most one
process at any time during the execution of the system. Note that it is possi-
ble for processes to have dangling pointers into the exchange heap (pointers to
blocks that the process does not own), but the static verification will prevent
the process from accessing memory through dangling references.

To make the static verification of the single owner property of blocks in the
exchange heap tractable, we actually enforce a stronger property, namely that

18

Chapter 1. Concurrency and Ownership

each block is owned by at most one thread at any time. The fact that each block
in the exchange heap is accessible by a single thread at any time also provides
a useful mutual exclusion guarantee.

This quote also highlights the idea that the separation has no operational meaning: it is
enforced by the Sing♯ compiler so that runtime checks for separation (or process isolation
in their own words) are not needed.

1.1.5 Memories

Explicit deallocation When considering memory-manipulating languages, two choices
are possible with respect to how memory is deallocated. This task can either be performed
explicitly by the programmer, or be delegated to a garbage collector that periodically frees
unused memory. Correctly disposing of unused memory cell is important for the well-being
of a system. Indeed, and although for simplicity we will model it as infinite in capacity,
memory is a limited resource. Thus, constantly allocating new cells that are never freed can
exhaust this resource. Failure to dispose of unused memory cells results in memory leaks.

In many programming languages memory leaks are not a concern because deallocation
is handled implicitly, by a garbage collector. To give a few examples, this is the case for
OC, J, C♯, and most scripting languages like P and P.

On the other hand, explicit deallocation is present in many so-called low-level program-
ming languages, like C, C++ and assembly languages. It is a desirable feature if memory
is scarce, for instance in embedded systems, or for memory-intensive applications wherein
the usage of memory should be optimised, or finally for software that cannot bear the cost
of having a garbage collector running in the background for performance reasons. Correct
handling of explicit deallocation is also a crucial concern in cryptography, where sensitive
data residing in clear text in memory cannot be handed back to the operating system by a
mere deallocation. Otherwise, an attacker might be given the same memory cells by the
memory manager and read the secrets. Instead, extra cleanup is required every time such
a resource is to be deallocated, which forbids the use of a traditional garbage collector, at
least for these resources.

In this work, we use a non-garbage-collected language, thus we are also interested in
proving the absence of memory leaks. Furthermore, we claim that our techniques can be
adapted to handle garbage-collected languages. This hope is backed by the fact that sepa-
ration logic, on which our own analysis is based, has been successfully adapted to handle
garbage collection in the past [CO01].

Ownership tracking The presence of the heap complicates the bookkeeping of what be-
longs to whom; for programs that only manipulate variables, it is easy to state that two pro-
grams operate on disjoint portions of the state: one simply has to check that they use differ-
ent variable identifiers. This is not possible anymore for memory-manipulating programs,
because of aliasing: two syntactically distinct variables may point to the same location
in memory during the execution. This problem has crippled the verification of memory-
manipulating programs for years before it found an elegant solution with separation logic:

19

1.2. Message passing

most of previous efforts made the non-aliasing constraints explicit, resulting in a blow-up of
the formulas that were used as specifications compared to their variable-only counterparts.

1.2 Message passing

When two processes wish to communicate via asynchronous message passing, they must
share a buffer. One process may then send, or queue messages on the buffer, that the
other one can receive, or dequeue. Our communication model is heavily inspired from
the one of the Singularity OS [FAH+06]: communication buffers are grouped pairwise into
bi-directional, asynchronous channels. Access to a channel is performed via two endpoints
on which one may both send to a buffer and receive from the other, achieving bi-directional
communication. A similar model of communication is the IPC (inter-process communica-
tion) socket model found in many operating systems. In our setting, the communications
are moreover copyless: sending a message does not result in copying its contents over the
channel, but rather in sending a mere pointer to the location of the message’s data in mem-
ory. This assumes a shared memory between processes, which can be achieved for instance
if they are run on the same machine.

We first introduce informally the communication primitives of our message-passing lan-
guage. We then discuss the design choices that have been made, and the problems of interest
related to the verification of message-passing programs.

1.2.1 Communication primitives

Let us describe informally the communication primitives we have adopted in this thesis.
The primitives for opening a channel and sending and receiving are direct adaptations of
the corresponding primitives in Singularity, while closing is performed differently in our
setting.

Opening a channel Opening a channel allocates two endpoints that are each other’s peer
(or mate) and have initially empty buffers.

Sending and receiving messages Each send and receive instruction of our language
specifies a message identifier, or tag, for the kind of message that is sent or that is ex-
pected on the channel. These tags can be thought of as representing the type of what
is being transferred. Receiving is only possible via a switch receive construct. Each
branch of this construct specifies an endpoint, a tag, and a continuation. The semantics of
switch receive is to select one of the branches that are ready to execute given the current
contents of the various endpoints’ buffers, perform the corresponding receive and call its
continuation. If none of the branches is ready to execute, it sleeps until a new message ar-
rives on one of the empty buffers. Sending, on the other hand, is asynchronous and always
succeeds.

When there is only one branch in a switch receive, for instance
switch receive { x = receive(a,e): p }

20

Chapter 1. Concurrency and Ownership

message a;

put_val(e,x) {
send(a,e,x);

}

get_val(f) {
y = receive(a,f);
if (y == 42) {

print(”The answer is 42.”);
} else {

print(”What was the question again?”);
}

}

main() {
local e,f;

(e,f) = open();
put_val(e,42) || get_val(f);
close(e,f);

}

Figure 1.5: Value passing.

where p is a program, x and e are variables, and a a message tag, we simply write

x = receive(a,e); p

Closing a channel Finally, closing a channel takes as arguments two expressions point-
ing to the locations of both endpoints of a channel, and disposes of them.

1.2.2 Examples

In the examples that follow, we will use function calls, which are not part of the syntax of
our programming language. However, they can be simulated by inlining the code at the call
sites, provided that we are careful not to use mutually recursive functions. We use e, f, …
for variables pointing to endpoints and x, y, … for variables containing integers or pointers
to regular memory cells.

The program of Figure 1.5 exchanges an integer value between two threads put_val and
get_val by passing a message tagged by a (declared in the preamble of the program – in
Sing♯ a would be annotated with a type, for instance int), and then proceeds to close the
channel. The variable y is global. Except for the printing operations, it is equivalent to the
program below:

local e,f;

(e,f) = open();
send(a,e,42);
y = receive(a,f);
close(e,f);

It is also equivalent to simply setting y to 42:

y = 42;

21

1.2. Message passing

put_cell(e,x) {
send(cell,e,x);

}

get_cell(f) {
y = receive(cell,f);
dispose(y);

}

main() {
local e,f;

x = new();
(e,f) = open();
put_cell(e,x) || get_cell(f);
close(e,f);

}

Figure 1.6: Cell passing.

The value of a message can also refer to an allocated location in memory, in which case the
ownership of it may be transferred from the sender process to the receiver process. The pro-
gram of Figure 1.6 exchanges a memory cell between two threads put_cell and get_cell
by passing a message cell, and then proceeds to close the channel. As get_cell gets own-
ership of the memory cell, it may modify it at will, in particular it may safely dispose of it,
as in the example. If put_cell tries and dereferences x after the send, a race can occur:
get_cellmay have already freed it, which would result in a memory violation (for instance
a segmentation fault or a bus error). Notice that the fact that ownership is transferred is not
enforced by the syntax; we could very well replace put_cell by
send(cell,e,x);
dispose(x);

and get_cell by y = receive(cell,f); without changing the overall effect of the pro-
gram or introducing a race condition. In other words, what is transferred operationally
are mere values, and the meaning we attach to them is an artifact of the informal proof of
correctness of the program that we have in mind.

Endpoints themselves can be sent over channels, in the sense that one may send the loca-
tion of an endpoint on a channel, thus letting the receiving process know of the location of
this endpoint, which makes it possible for this process to use it to send and receive over it.
As we consider only point-to-point communications (see next section), concurrent accesses
to the same endpoint are forbidden. This usually means that further access to a cell or end-
point location sent over a channel is forbidden to the sending process, as the receiving one
may now interact with them. In other words, as already mentioned before, ownership of the
contents of a message is lost upon sending (and granted upon receiving).

Using endpoint transfer, it is possible to transfer a value indirectly over a channel by
encapsulating it inside another channel, as in Figure 1.7. In this example, the address of a
memory cell is sent over a private channel, the receiving endpoint of which is sent to another
process. This process retrieves the endpoint, and can then receive the desired address from
it. This program has a memory leak: it fails to dispose the channel (e_cell, f_cell).

Another use for endpoint passing, mentioned earlier and pictured in Figure 1.8, is for
channel closing: the example of Figure 1.6 can be extended by sending e over itself after
sending x, so that get_cell2 can close the channel (e, f). The same extension is possible

22

Chapter 1. Concurrency and Ownership

put_cell_indirect(e,x) {
local e_cell,f_cell;

(e_cell,f_cell) = open();
send(cell,e_cell,x);
send(ep,e,f_cell);

}

get_cell_indirect(f) {
local y,ff;

ff = receive(ep,f);
y = receive(cell,ff);
dispose(y);

}

main() {
local x,e,f;

x = new();
(e,f) = open();

put_cell_indirect(e,x)
|| get_cell_indirect(f);
close(e,f);

}

Figure 1.7: Indirect cell passing through a secondary channel.

put_cell2(e,x) {
send(cell,e,x);
send(fin,e,e);

}

get_cell2(f) {
local y,ee;

y = receive(cell,f);
ee = receive(fin,f);
close(ee,f);

}

main() {
local x,e,f;

x=new();
(e,f)=open();
put_cell2(e,x) || get_cell2(f);

}

Figure 1.8: Cell and endpoint passing.

for the program of Figure 1.7 to avoid the memory leak spotted above.
Let us give a final version of the program that sends a whole linked list starting at x

cell-by-cell through the channel in Figure 1.9. The receiving process (get_list) cannot
know anymore when the finmessage will arrive, so we use the switch receive construct
between the two possible messages cell and fin, which will select the appropriate branch
depending on which one is available in the buffer. The main function is as in Figure 1.8.
We write [x] for the dereferencement of the pointer contained in x. In this example, we
ignore the data that may be contained in the list, hence each node of the list simply points
to its successor in the list.

A particularity of the copyless message passing setting is that sending x before derefer-
encing it in the example above (that is, moving send(cell,e,x); one line earlier) could
result in a fault, as the cell pointed to by x is not owned by this thread after it has been sent,

23

1.2. Message passing

put_list(e,x) {
local t;
while (x != 0) {

t = [x]; /* tail */
send(cell,e,x);
x = t; }

send(fin,e,e);
}

get_list(f) {
local x, ee;

ee = 0;
while (ee == 0) {

switch receive {
x = receive(cell,f): { dispose(x); }
ee = receive(fin,f): {}

}}
close(ee,f);

}

Figure 1.9: Cell-by-cell list passing.

and hence may have been deallocated in between the two instructions.
The linked list can also be sent in one single message, as once a process knows where the

head of the list is all the other cells become reachable. The resulting program would then
be similar to the one of Figure 1.8. This is another example where the meaning attached to
messages of a program depends on what the program does. The same message may indicate
a transfer of ownership of a single memory cell or of a whole linked list.

1.2.3 Design choices

Asynchronous or synchronous Communications may be either asynchronous or syn-
chronous; in the latter case, the sending of a message must wait until the other party is ready
to receive, and this exchange acts as a synchronisation point between the two, whereas in
the case of asynchronous message passing the sending operation can return immediately. In
this case, the maximal size of what can be stored in the channel matters, because a possibly
unbounded number of messages can be sent before they begin to be received. If this num-
ber exceeds the capacity of the channel, the send operation can either block until room is
made for new incoming messages, or fault, depending on the implementation. Synchronic-
ity can be retrieved from an asynchronous model by making each receive be followed by
an acknowledgement message. In this work, we consider asynchronous communications
with unbounded buffers, to simplify the model. We will provide in Chapter 3 a sufficient
condition to ensure that buffers do not grow past a certain size.

Similarly, the receive operation blocks when the buffer is empty, whereas a more realistic
setting should also include a non-blocking receive, or one with an optional timeout, that
would return a special value should the buffer remain empty after some time has elapsed.
We believe that the work presented in this thesis could easily be extended to include such
behaviours: as the switch receive construct of our language allows a program to wait
for several kinds of messages on several channel endpoints simultaneously, non-blocking
receives might be modelled by waiting on an additional channel for a “timeout” message
delivered periodically by an auxiliary process.

Finally, there also exists a more extreme case of asynchronicity, for instance in MPI (the

24

Chapter 1. Concurrency and Ownership

message passing interface 3), where sending returns even before the message has been fully
sent. In this case, there is usually also a primitive to wait for the asynchronous send to finish.
In our setting, sends are atomic in the sense that they return only once the message has been
put in the receive buffer of its recipient.

Recipients of messages When sending messages, one has to specify who the recipient
of the message is. This can be done either explicitly by naming the recipient (in which
case the name of the channel is implicit), for instance by its process identifier as it can be
done in MPI, or implicitly by naming the channel instead. We support the latter form with
our channel model: sending and receiving are performed on any of the two endpoints of a
channel, irrespective of whom they belong to.

Message tags and branching receives When a channel may carry messages of differ-
ent sorts, one is usually faced with having to take different actions depending on the kind
of message that is present at the head of the buffer. One means of discrimination between
such messages is to associate “tags” to each of them that unambiguously determine their
type. A language construct may then be used to discriminate messages according to their
tags and take different actions for different tags. In addition to our own setting, this solution
has been chosen by Singularity, session types, and the E programming language, to
name a few. We have adopted the switch receive construct from Singularity.

One-to-one, one-to-many, many-to-one In some cases, one may wish to broadcast a
message to a set of recipients instead of sending the same message over several individual
channels. Practically, this could mean being able to duplicate an endpoint between several
participants, each allowed to perform only receives on it. We only support point-to-point
communications in this work. Moreover, we ensure a linear usage of channels: sharing of
endpoints is disallowed and only one process at a time may attempt to send or receive on a
particular endpoint.

Life and death of channels In our setting, channels can be dynamically allocated, dis-
posed of, and individual endpoints can be passed around through other channels, thus al-
lowing the topology of the interconnection network between processes to change during
the execution. Acknowledging the fact that endpoints are allocated on the heap allows for
a flexible handling of channels, one benefit of which being that they may be stored inside
arbitrarily complex mutable data structures.

Protocol specification It is often desirable to be able to describe what protocol a given
channel follows, that is which sequence of messages can be expected on this channel. This
can help in proving the safety of communications on any channel following this protocol
for instance. For this purpose, we have chosen to borrow the notion of contracts from the

3http://www.mpi-forum.org/

25

http://www.mpi-forum.org/

1.2. Message passing

Singularity project [FAH+06]. Session types [THK94] represent another proposal to struc-
ture communications, and have been implemented as an extension of J called S
J [HYH08].

Ordering of messages and reliability of channels When the two participants of a
communication are physically apart, for instance in the case of two machines communicat-
ing over the Internet, implementation choices have to be made that may no longer ensure
that messages arrive in the order they were sent or that they will arrive at all. The Internet
Protocol (IP), for instance, ensures nothing of the sort, and packets may even arrive twice
or be corrupted during transport. Most of the time, an additional layer, for instance the
Transmission Control Protocol (TCP), controls such bad behaviours and restores the first-in
first-out (FIFO) ordering of messages as well as their integrity.

As we are interested in communications that occur mostly within a single machine, for
instance in low-level operating system code, we choose not to concern ourselves with what
could happen on longer-distance communications and consider only reliable channels with
a FIFO ordering of messages.

Closing a channel It is common in message-passing languages to close a channel by
closing each endpoint separately. For instance in S♯, closing an endpoint on its own
results in a special message ChannelClosed being sent to its peer. The other endpoint
can continue sending on the channel, even after receiving the closing message. Once both
endpoints have sent the ChannelClosed message, the channel is effectively closed.

This approach can easily be simulated in our setting. In fact, in several of the examples
we have given, for instance those of Figures 1.8 and 1.9, this is how the channels were
closed: the program implementing one side of the communication sends its endpoint over
itself at the end of the communication (for example, send(fin,e,e), where e points to
said endpoint, and fin is the label chosen to indicate the end of communications). The peer
program can then receive this endpoint through its own endpoint, and thus close the channel
since it now holds both of its endpoints.

1.2.4 Problems of interest

In Chapters 3 and 5 we will introduce mechanisms to prove certain safety properties about
programs that are specific to message passing. Let us informally discuss them.

Boundedness For asynchronous communications, a buffer is used to hold pending mes-
sages (messages that have been sent and are waiting to be received). It is often interesting
to know whether a bound can be put on the maximum number of pending messages of all
the executions of a program, hence on the size of the buffer, in which case communications
are said to be bounded. The communications of the list sending program (Figure 1.9) are
not bounded, because arbitrarily many cells may be sent (depending on the length of the
list) before the receiving process catches on. We can write another version of this program

26

Chapter 1. Concurrency and Ownership

where the size of the buffers is bounded by 1 by adding acknowledgement messages af-
ter each send: receive(ack,e); is added after send(cell,e,x) in put_list, and the
corresponding branch of the switch receive of get_list becomes:
x = receive(cell,f): { send(ack,f); dispose(x); }

In fact, adding acknowledgement messages is a general recipe to bound the size of all buffers
by 1, and to mimic the synchronous setting.

The Singularity OS, for instance, insists on all communication buffers being bounded, by
a bound that is known at the time the program is compiled [FAH+06]. Indeed, the operating
system itself uses message passing for communications, and it must be able to operate even
in an out-of-memory context (when all the available memory has been allocated, for instance
because of a memory leak in one of the running programs; in this case, the faulty program is
generally terminated by the kernel and its memory reclaimed). Were the buffers unbounded,
they would have to be implemented as dynamic data structures, for instance as linked lists,
and sending a message would need to allocate a new node in this list. This is not possible in
an out-of-memory context. On the other hand, if a bound is known on the size of a buffer,
it can be implemented by a fixed-size array allocated once and for all, and the channel will
be able to operate without requiring any additional memory.

Deadlock-freedom Communications, like all means of synchronisation, can introduce
deadlocks. A communication deadlock happens when two or more processes are blocked
waiting for each other to send a message. We can also call deadlock a situation where a
process is waiting for messages of some kind on an endpoint, but either another type of
message arrives, or no message at all. For instance, assuming that (e, f) and (ee, ff) form
two channels, the two program snippets below can and will deadlock if executed with empty
initial buffers:
send(a,e); ∥ switch receive { receive(b,f): {} receive(c,f): {} }

The program above deadlocks because the process on the right is waiting for b or c, but a
is sent. The program below deadlocks because it waits for messages on the wrong channel
(it may not deadlock if another process sends a message a on ee at some point):
send(a,e); ∥ receive(a,ff);

The program below shows a more intricate example of deadlock:
⎧⎪⎪⎨⎪⎪⎩

receive(b,e);
send(a,e);

⎫⎪⎪⎬⎪⎪⎭
∥
⎧⎪⎪⎨⎪⎪⎩

receive(a,f);
send(b,f);

⎫⎪⎪⎬⎪⎪⎭
The deadlock disappears if the order of sends and receives is permuted on either side of

the parallel composition (or on both sides):
⎧⎪⎪⎨⎪⎪⎩

send(a,e);
receive(b,e);

⎫⎪⎪⎬⎪⎪⎭
∥
⎧⎪⎪⎨⎪⎪⎩

receive(a,f);
send(b,f);

⎫⎪⎪⎬⎪⎪⎭

Fault-freedom One of the examples of the previous paragraph requires more attention,
namely the first one, in which the message at the head of the buffer is not one of the messages

27

1.2. Message passing

expected by the switch receive. This can be seen as an erroneous communication: either the
send should not be a a message, or the switch receive should include another case for
this message. As it is, it corresponds to what Cécé and Finkel call an unspecified reception
in the paper “Verification of programs with half-duplex communication” [CF05]:

An unspecified reception configuration corresponds to a configuration in
which a machine is definitively blocked by its inability to receive the head
messages present in its input channels.

This kind of deadlock is also considered as disastrous by the session type community: a
key result in this area is that well-typed programs do not exhibit this error [THK94].

Finally, in Sing♯, that inspired our own language, a switch receive would fault in this
case [FAH+06]:

If the message at the head of the buffer is not the expected message or the
channel is closed by the peer, the receive fails.

Interestingly enough, the solution first proposed by Singularity to eliminate these dead-
locks was unsound, as shown by Stengel and Bultan [SB09], who corrected it independently
from our own work (which came to the same conclusion and solution, presented in Chap-
ter 3).

Leak-freedom When a communication channel is closed, nothing guarantees that its
buffers are empty. As a result, the following program leaks a memory cell that could have
been retrieved from the channel, had it not been closed abruptly:
(e,f) = open();
x = new();
send(cell,e,x);
x = 0;
close(e,f);

Without garbage collection, this kind of error should also be eliminated. In Singularity,
where the memory is garbage collected, nothing is done to guard against these programs.

Copyless communications Finally, one can wonder whether or not communicating in a
copyless fashion introduces races or memory faults, as we have already seen in the examples
that were presented.

1.2.5 Encoding locks and message passing into one another

Shared memory and message passing are, in all generality, equally expressive: one can
transform any program using one of the two paradigms into an equivalent program using
the other one. Locks can of course encode message passing; this is how message passing
would be implemented in practise. Let us discuss here the other way around.

One way to simulate locks using our programming language is by using one central lock-
ing authority per lock identifier, by whom the other threads will be granted locks. Each

28

Chapter 1. Concurrency and Ownership

thread holds a different endpoint to each of the locks authorities. Lock identifiers are thus
replaced by endpoints to the relevant authority. A thread can acquire a lock by sending
an acq message to the central authority and then waiting for an ack message. The lock is
released by a rel message. This gives the following pattern, assuming that e is an endpoint
through which the thread can communicate with the central authority:
send(acq,e,l);
receive(ack,e);
// Critical section here
send(rel,e,l);

The authority for a given lock is given by the following code, assuming two threads that
send locking requests on e1 and e2:
while (true) {
switch receive {

receive(acq,e1): {
send(ack,e1);
receive(rel,e1);

}
receive(acq,e2): {

send(ack,e2);
receive(rel,e2);

}
}}

More robust solutions that could handle an unbounded number of locks and threads can
be programmed if we extend the switch receive construct to wait on a linked list of
endpoints. This extension exists for instance in Singularity.

1.2.6 Further examples of message passing

To conclude this chapter, let us show how message passing can be used to solve the producer-
consumer and the readers-writers problems.

Producer-consumer As our setting embeds the concept of a buffer in the synchronisa-
tion primitives themselves, the producer-consumer problem has a very easy solution, pre-
sented Figure 1.10. Contrast it with the same solution using CCR (Figure 1.3, page 17). The
message passing solution assumes a channel (e, f) between the producer and the consumer
processes, over which messages of type item may be exchanged. Note that the communica-
tion is uni-directional, from the producer to the consumer. This solution is race free, fault
free and deadlock free. A leak-free full-fledged version would require an extra message to
signify the end of production. The communication buffer is unbounded, but as usual could
be bounded by adding acknowledgement messages.

Readers-writers While the producer-consumer problem is easily solved using message
passing because its solution essentially simulates message passing, this is not the case for
the readers-writers problem. In fact, to implement a solution of the readers-writers prob-
lem using message passing, one essentially re-implements locks. The solution proposed

29

1.2. Message passing

Consumer code:
while (true) {

x = receive(item,f);

/* do something with x here */
}

Producer code:
while (true) {

x = produce_item();
send(item,e,x);

}

Figure 1.10: A solution to the producer-consumer problem using message passing.

Reader code:
while (true) {

send(read_request ,e);
x = receive(value,e);

/* do something with x here */
}

Writer code:
while (true) {

y = produce_item();
send(write_request ,e,y);
receive(write_ack ,e);

}

Figure 1.11: A solution to the readers-writers problem using message passing.

Figure 1.11 assumes that the endpoint e used in each instance of readers and writers is dif-
ferent each time. All the peers of these endpoints are held by a central authority which takes
care of granting reading and writing rights only when mutual exclusion is ensured. We omit
the code for this process. Note that the code for just the readers and writers is still simpler
than its locking counterpart, but only because the mutual exclusion mechanism happens
outside of it.

30

C

A Model of
Copyless Message Passing

This chapter describes the syntax and semantics of our message-passing programming lan-
guage, and formalises some of the ideas introduced in the previous chapter. The semantics
of the language is independent of contracts and logical specifications.

2.1 Programming language

2.1.1 Heap-manipulating Imperative Programming Language

Grammar Let us define H, the heap-manipulating imperative programming language.
We assume that the following sets are defined:

• the countably infinite set Var of program variables, ranged over by e, f, x, y, …

• the countably infinite set Cell of memory locations, ranged over by l, …

• the countably infinite set Val of values, ranged over by v, …

We suppose that Var∩Cell = Var∩Val = ∅, 0 ∉ Cell and Cell∪N ⊆ Val. The grammar
of expressions, boolean expressions, atomic commands and programs is given in Figure 2.1.

The syntax is defined algebraically to ease the definition of the operational semantics and
of the logic. However, using assume and non-deterministic choice, one can recreate the
usual if and while constructs of programming languages: we write if (B) p1 else p2
for

(assume(B); p1) + (assume(not B); p2) .

Likewise, while (B) p is syntactic sugar for

(assume(B); p)∗; assume(not B) .

31

2.1. Programming language

E ::= expressions
x variable
∣ v value
∣ E +E ∣ E −E ∣ ⋯ arithmetic operations

B ::= E = E ∣ B and B ∣ not B boolean expressions

c ::= instructions
skip inaction
∣ assume(B) assume condition
∣ x = E variable assignment
∣ x = new() memory allocation
∣ x = [E] memory lookup
∣ [E] = E memory mutation
∣ dispose(E) memory deallocation

p ::= programs
c atomic command
∣ p; p sequential composition
∣ p ∥ p parallel composition
∣ p + p non-deterministic choice
∣ p∗ iteration
∣ local x in p local variable declaration

Figure 2.1: Syntax of the H programming language (x ∈ Var and v ∈ Val).

Records Although the syntax lacks a record model, we can simulate one by taking Loc to
be the set of strictly positive integers and adding a size argument to the allocation command
new. This allows programs to allocate consecutive cells in memory, which can be accessed
through pointer arithmetic to simulate field accesses. For instance, one would allocate an
element of a doubly linked list with x = new(3) and access its datum at x, its forward link
at address x + 1 and its backward pointer at address x + 2.

Expressions could be extended with richer arithmetic operators (e.g. × or ÷), or other
basic data types like strings. However, the fragment presented above is sufficient for our
exposition.

HCCR. H does not provide any concurrency primitives to synchronise or communi-
cate between programs (other than sharing access to variables without any protection mech-
anism such as locks). HCCR is an extension of H with constructs for declaring resources
and using them inside conditional critical regions (CCR). It extends the grammar of H’s

32

Chapter 2. A Model of Copyless Message Passing

c ::= commands
⋯ see Figure 2.1
∣ (e,f) = open() channel creation
∣ close(E,E) channel destruction
∣ send(a,E,E) labelled message sending

p ::= programs
⋯ see Figure 2.1
∣ g guarded external choice

g ::= guarded external choice
x = receive(a,E): p guarded program
∣ g1 ◻ g2 external choice

Figure 2.2: Syntax of HMP (a ∈MsgId and e, f ∈ Var).

programs in the following way:

p ::= programs
⋯ see Figure 2.1
∣ resource r in p resource declaration
∣ with r when (B) p CCR

Once a resource has been declared, it can be used to create conditional critical regions
which will only execute if no CCR using the same resource is currently executing and if
some boolean condition is satisfied. The boolean condition can be omitted (B = true in the
grammar above), in which case we can simply write with r p.

2.1.2 HMP

Let us extend H with message-passing primitives, and call the resulting language HMP.
We assume two extra countably infinite sets MsgId and Endpoint of respectively message
identifiers ranged over by a, … and endpoint locations ranged over by ε, … The two sets
are disjoint, and disjoint from previously defined sets, with the exception of Val. Although
MsgId∩Val = ∅, endpoint locations are added as possible values: Endpoint ⊆ Val. More-
over, as for regular memory cells, 0 ∉ Endpoint. The syntax of HMP is given in Fig-
ure 2.2.

The switch receive construct described in the previous chapter is replaced with its
more algebraic counterpart: the guarded external choice. One can encode the former using
the latter. For instance,
switch receive {
x = receive(cell,f): { dispose(x); }
e = receive(fin,f): {}
}

33

2.2. Semantics

becomes
(x = receive(cell,f): dispose(x)) ◻ (e = receive(fin,f): skip)

2.2 Semantics

2.2.1 States

States consist of a stack, a cell heap that contains regular cells and an endpoint heap map-
ping endpoints to their peers and their receive buffers. We write σ = (s, h, k) for elements
of State defined below.

State ≜ Stack ×Heap × EHeap Stack ≜ Var ⇀fin Val Heap ≜ Cell⇀fin Val

EHeap ≜ Endpoint⇀fin Endpoint × (MsgId ×Val)∗

As is standard for models of separation logic, we model the heap as a finite partial map
(written “⇀fin”) from locations to values. The domain of the heap corresponds to the al-
located addresses and, for simplicity, is unbounded in size, although only a finite number
of cells may be allocated at any given point in time. Alternatively, one may think of the
domain of the heap as the set of memory cells that are owned in the current state.

The novelty compared to usual models of separation logic is the endpoint heap k. The
separation of dynamically allocatable resources into two distinct heaps is a purely cosmetic
design choice that simplifies the presentation of the semantics, because each type of object
has a different type of image by the heap and is used in different contexts (for instance, an
endpoint cannot be freed using the dispose command, and a cell cannot be used to send
messages). Thus, a cell can point to any value, but an endpoint points to its peer and to its
buffer. The latter represents the pending messages waiting to be received on this endpoint:
it is a word of pairs (a, v) where a is a message identifier and v a value. Equivalently,
there could be only one heap that associates one of two sorts to each allocated locations,
similarly to the work of Gotsman et al. on storable locks [GBC+07] where the different sorts
that coexist in the same one heap are one for locks and one for regular memory cells.

The stack follows the same idiom: variables must be owned by the program to be acces-
sible without a risk of a race condition.

If σ = (s, h, k), ε ∈ dom(k) and k(ε) = (ε′, α), ε′ is called the peer (or mate) of ε and
is denoted by mate(k, ε) or mate(σ, ε), and α is called the buffer of ε and is denoted by
buffer(k, ε) or buffer(σ, ε).

Each state (s, h, k) should be well-formed, in the sense that the following axioms hold:

∀ε ∈ dom(k).mate(k, ε) ∈ dom(k) (Channel)
∀ε ∈ dom(k).mate(k, ε) ≠ ε (Irreflexive)

∀ε ∈ dom(k).mate(k,mate(k, ε)) = ε (Involutive)

The first condition ensures that if the domain of the endpoint heap contains one endpoint
of a channel then it also contains its peer. As we will see in Section 2.2, this is required

34

Chapter 2. A Model of Copyless Message Passing

by the operational semantics since to send on one endpoint one needs to modify its peer’s
buffer.

The other two conditions ensure that channels are well-formed: endpoints are paired into
bi-directional channels composed of two buffers.

2.2.2 Notations

The operational semantics is given as a set of rules that describe the reduction relation
⇒ between a configuration p, σ where p is a program and σ a state, and either another
configuration p′, σ′ or an error, written respectively p, σ ⇒ p′, σ′ and p, σ ⇒ error.
Because we are interested in race-free programs, we will force racy ones to fault. Similarly,
we force programs in an unspecified reception configuration to fault. This gives rise to two
kinds of errors:

OwnError indicates an ownership error: the program has tried to access a resource it
does not currently own, be it a variable, a memory cell or an endpoint;

MsgError indicates a message error during a reception: there is an unexpected message
at the head of a receive queue, so the receiving operation fails.

We write error for one of OwnError or MsgError in the rules that propagate an
error through programming constructs. We write⇒∗ for the reflexive and transitive closure
of⇒.

Explicit error detection is a rather unrealistic aspect of the semantics, because threads
would normally not fault when merely trying to access the same memory location, and may
or may not fault when receiving an unexpected message depending on the implementation.
They could however end up in an incoherent state in the case of a race, and as discussed in
the previous chapter defining an exact semantics for this kind of behaviours is challenging
to say the least. In this thesis, our goal is to certify that no such error happens, thus we make
them explicit even in the semantics. This makes it easier to identify unsafe starting states for
a program p: they are the states σ such that p, σ⇒∗ OwnError or p, σ⇒∗MsgError.
This is a standard practise in models of separation logic [Bro07, COY07], that reflects its
fault-avoiding interpretation of Hoare triples: a proved program never runs into an error
state.

If a program p does not reduce into an error from a given state σ, the reduction rules give
the continuation p′ of p and the resulting state σ′:

p, σ⇒ p′, σ′

If p′ is skip, the program has successfully reached a final state σ′.
An expression E is associated to a value ⟦E⟧s by an evaluation that looks up the values

of the program variables mentioned inE (the set of which is written var(E)) into the stack
s. IfE mentions a variable not in the domain of the stack, then ⟦E⟧s is undefined (this will
be the cause of an ownership error in many cases of the semantics). The value of ⟦E⟧s is

35

2.2. Semantics

computed by structural induction on the expression:

⟦v⟧s ≜ v ⟦x⟧s ≜ s(x) ⟦E1 +E2⟧s ≜ ⟦E1⟧s + ⟦E2⟧s

⟦E1 −E2⟧s ≜ ⟦E1⟧s − ⟦E2⟧s . . .

Some of these operations are undefined if one of the subexpressions is not an integer (for
instance for locations, although one may consider that locations as integers to allow pointer
arithmetic, as discussed page 32).

Finally, given a function f , we write [f ∣ x ∶ v] for the function f ′ that has the same
domain as f , possibly increased by x if xwas not in the domain of f , and such that f ′(x) =
v and f ′(y) = f(y) for all y ∈ dom(f) ∖ {x}. We write f ∖ S for the function f ′

defined on dom(f) ∖ S such that f ′ and f coincide on this new domain. We further
abbreviate modifications of the buffer of an endpoint by writing [k ∣ buffer(ε)←α] for
[k ∣ ε ∶ (mate(k, ε), α)]. Although we will not use it in this chapter, we also write ∅ for
a function with empty domain and [x1 ∶ v1, . . . , xn ∶ vn] for [∅ ∣ x1 ∶ v1, . . . , xn ∶ vn].

For concision, whenever possible, we describe all the cases where executing a command
will produce an ownership violation together with the reduction where the command exe-
cutes normally. We do so by putting the premises that are necessary for the command not to
fault in boxes . A boxed premise indicates a reduction to OwnError from a state where
the premise is either false or undefined.

Consider for instance the rule for memory lookup:

x ∈ dom(s) ⟦E⟧s = l h(l) = v

x = [E], (s, h, k)⇒ skip, ([s ∣ x ∶ v], h, k)

It indicates that x = [E] will fault whenever x or one of the variables in E is not present
in the current stack, or when E does not evaluate to an address present in the heap. Thus,
this rule stands for the following three rules:

x ∈ dom(s) ⟦E⟧s = l h(l) = v
x = [E], (s, h, k)⇒ skip, ([s ∣ x ∶ v], h, k)

var(x,E) ⊈ dom(s)
x = [E], (s, h, k)⇒OwnError

⟦E⟧s = l l ∉ dom(h)
x = [E], (s, h, k)⇒OwnError

2.2.3 Operational semantics

The reduction rules of the operational semantics are given Figures 2.3 to 2.6. Let us review
the effect each command can have on a given state (s, h, k).

Figure 2.3 groups the stack commands.

• skip does not alter the current state.

• assume(B) faults if B cannot be evaluated in the current stack. Otherwise, it will
either block or do nothing depending on the truth value of ⟦B⟧s.

36

Chapter 2. A Model of Copyless Message Passing

skip, σ⇒ skip, σ

⟦B⟧s = true

assume(B), (s, h, k)⇒ skip, (s, h, k)

x ∈ dom(s) ⟦E⟧s = v

x = E, (s, h, k)⇒ skip, ([s ∣ x ∶ v], h, k)

Figure 2.3: Operational semantics of stack commands.

x ∈ dom(s) l ∈ Cell ∖ dom(h) v ∈ Val

x = new(), (s, h, k)⇒ skip, ([s ∣ x ∶ l], [h ∣ l ∶ v], k)

⟦E⟧s = l l ∈ dom(h)

dispose(E), (s, h, k)⇒ skip, (s, h ∖ {l}, k)

x ∈ dom(s) ⟦E⟧s = l h(l) = v

x = [E], (s, h, k)⇒ skip, ([s ∣ x ∶ v], h, k)

⟦E1⟧s = l ⟦E2⟧s = v l ∈ dom(h)

[E1] = E2, (s, h, k)⇒ skip, (s, [h ∣ l ∶ v], k)

Figure 2.4: Operational semantics of heap commands.

• x = E faults if E cannot be evaluated in the current stack or if x is not present in
the stack; otherwise, the value of x is updated to ⟦E⟧s.

Cell manipulation commands are grouped in Figure 2.4.

• x = new() picks an unallocated address l and assigns a non-deterministic value to
it. The variable x is updated to contain l. If x was not in the stack, the command
faults.

• dispose(E) faults if eitherE cannot be evaluated on the current stack, or if ⟦E⟧s =
l is not allocated in h. Otherwise, it removes l from the domain of h.

• x = [E] faults if either E cannot be evaluated on the current stack, or if ⟦E⟧s = l
is not allocated in h, or if x is not present in the stack. Otherwise, the value of x is
updated to the value contained at address l.

37

2.2. Semantics

e, f ∈ dom(s) ε, ε′ ∈ Endpoint ∖ dom(k)

(e,f) = open(), (s, h, k)⇒
skip, ([s ∣ e ∶ ε, f ∶ ε′], h, [k ∣ ε ∶ (ε′, ␣); ε′ ∶ (ε, ␣)])

⟦E1⟧s = ε1 ⟦E2⟧s = ε2 k(ε1) = (ε2, α1) k(ε2) = (ε1, α2)

close(E1,E2), (s, h, k)⇒ skip, (s, h, k ∖ {ε1, ε2})

⟦E1⟧s = ε ⟦E2⟧s = v mate(k, ε) = ε′

send(a,E1,E2), (s, h, k)⇒ skip, (s, h, [k ∣ ε′ ∶ buffer(ε′)←buffer(k, ε′) ⋅ (a, v)])

x1, . . . , xn ∈ dom(s) ⟦E1⟧s ∈ dom(k) & . . . & ⟦En⟧s ∈ dom(k)
⟦Ei⟧s = εi buffer(k, εi) = (ai, v) ⋅ α

nü

j=1
xj = receive(aj,Ej): pj , (s, h, k)⇒ pi, ([s ∣ xi ∶ v], h, [k ∣ buffer(εi)←α])

⟦E1⟧s = ε1 & . . . & ⟦En⟧s = εn
∃j.∃a.∃v.∃α. buffer(k, εj) = (a, v) ⋅ α & (∀j′. εj′ = εj ⇒ aj′ ≠ a)

nü

j=1
xj = receive(aj,Ej): pj , (s, h, k)⇒MsgError

Figure 2.5: Operational semantics of communications.

• For [E1] = E2 to succeed, the stack must be able to evaluateE1 andE2, and ⟦E1⟧s
must be allocated in h. The mutation of this cell then takes place.

Communication commands are grouped in Figure 2.5.

• (e,f) = open() allocates two fresh endpoint locations in the endpoint heap k and
sets their value so that they point to each other and have initially empty buffers (the
empty word is written ␣). It faults if either e or f is not allocated in the stack.

• close(E1,E2) checks that the values of E1 and E2 point to endpoints which are
each other’s peer, hence which form a channel. If this is the case, it deallocates them
from the endpoint heap. Note that any message remaining in the queues is lost, which
is often undesirable. Part of our analysis will try to ensure that it is never the case
that messages are left in the queues when a channel is closed. If any of the conditions
mentioned above is not satisfied, the command faults.

• send(a,E1,E2) looks up the value ε of E1 in the current stack which must be an
allocated endpoint address of k, the value v of E2, then fetches the peer ε′ of ε from

38

Chapter 2. A Model of Copyless Message Passing

k to enqueue the pair (a, v) in the buffer of ε′, resulting in α ⋅ (a, v) (where ⋅ is
the concatenation operation over words). The command faults if any of the lookups
fails. Note that sending never blocks and, provided that appropriate resources are
held, always succeeds.

• The case of receiving is more involved, since it may only be performed inside an
external choice block.1 The reduction rule selects an available message in one of the
endpoints’ buffers that is awaited by one of the receives. In other words, it selects
a message (ai, v) such that xi = receive(ai,Ei): pi is one of the guarded pro-
cesses of the external choice. If it finds such a pair, it pops it from the corresponding
buffer, and stores the value of the message in xi. If not, there are two possibilities:
either the buffers of all the endpoints mentioned are all empty, in which case the re-
ceive blocks, or the pair at the top of one of the endpoints’ buffers is an unexpected
one. The latter case produces a MsgError error, even when other branches could
execute successfully.

Finally, if any of the xj is absent from the stack, or if the expressions cannot be
evaluated in the stack, or if they do not all correspond to allocated endpoint locations,
the command faults and results in OwnError.

The semantics of programming constructs is given Figure 2.6. We write freevar(p) for
the set of free variables of p, which is defined as usual by structural induction on p as the
set of variables x that appear in p outside of the scope of a local x in p construct.

For simplicity, the local construct is treated as a statically scoped allocation and deal-
location of a fresh variable on the stack. For this purpose, a delete statement is appended
at the end of the program, that deallocates the local variable. Since it only occurs in such
instances, the variable will always be allocated when delete is called, hence we need not
specify it as a requirement in the semantics. The delete command is not part of the pro-
gramming language (in particular, it cannot be used by the programmer): it is only an artifact
of the semantics.

The semantics of a parallel composition p1 ∥ p2 is all the possible interleavings of the
actions of p1 and p2, possibly resulting in a fault if there is a race between the two programs.
The purpose of the predicate norace(p1, p2, σ) is to detect such races: it checks if there
is an immediate race between p1 and p2, that is if p1 and p2 are both about to access to
the same resource, and one of them is trying to write to it. Here a resource may be a stack
variable, a memory location or an endpoint of a channel.

Given a program p and a state σ, we define the sets iw(p, σ) and ir(p, σ) of resources
that are respectively immediately written to and read by p in the state σ. Immediately means
that said resources will be accessed by the program at the very next step of its execution
according to the operational semantics. For instance, x = E; p immediately writes to x
and to x only regardless of what p is, while any program of the form p1 + p2 does not

1The way it is performed here is unfortunately not compositional, in that we describe only the reduction of all
of its branches at the same time. In particular, we lack a rule that would describe the behaviour of g1 ◻ g2
solely in terms of the behaviours of g1 and g2 considered independently. A modular description is in fact
also possible, but would not be simpler, so we use the non-modular one in this thesis.

39

2.2. Semantics

p1 + p2, σ⇒ p1, σ p1 + p2, σ⇒ p2, σ

p1, σ⇒ p′1, σ
′

p1; p2, σ⇒ p′1; p2, σ
′ skip; p2, σ⇒ p2, σ

p1, σ⇒ error

p1; p2, σ⇒ error

norace(p1, p2, σ) p1, σ⇒ p′1, σ
′

p1 ∥ p2, σ⇒ p′1 ∥ p2, σ′
p1, σ⇒ error

p1 ∥ p2, σ⇒ error

norace(p1, p2, σ) p2, σ⇒ p′2, σ
′

p1 ∥ p2, σ⇒ p1 ∥ p′2, σ′
p2, σ⇒ error

p1 ∥ p2, σ⇒ error

skip ∥ skip, σ⇒ skip, σ p∗, σ⇒ skip + (p; p∗), σ

y ∈ dom(s)
delete(y), (s, h, k)⇒ skip, (s ∖ {y}, h, k)

v ∈ Val y ∉ dom(s) ∪ freevar(p)
local x in p, (s, h, k)⇒ p[x←y]; delete(y), ([s ∣ y ∶ v], h, k)

Figure 2.6: Operational semantics of programming constructs.

immediately writes to or reads any resource (it must first choose whether to execute p1 or
p2).

Table 2.1 gives the sets iw(p, σ) and ir(p, σ) for all programs p and states σ. Let us
denote witch ia(p, σ) the immediate accesses of p from σ:

ia(p, σ) ≜ iw(p, σ) ∪ ir(p, σ)

The predicate norace(p1, p2, σ) is defined as:

norace(p1, p2, σ) ≜
⎧⎪⎪⎨⎪⎪⎩

true if iw(p1, σ) ∩ ia(p2, σ) = iw(p2, σ) ∩ ia(p1, σ) = ∅
false otherwise

The semantics of all the other programming constructs is standard.

2.2.4 Properties of the operational semantics

Well-formed states In this subsection, we prove some properties that act as touchstones
for the operational semantics presented above. First, the operational semantics does not
create ill-formed states from well-formed ones.

40

Chapter 2. A Model of Copyless Message Passing

Program Immediate writes Immediate reads
assume(B); p ∅ var(B)

x = E; p {x} var(E)
x = new(); p {x} ∅
x = [E]; p {x} var(E) ∪ {⟦E⟧s}

[E1] = E2; p {⟦E1⟧s} var(E1,E2)
dispose(E); p {⟦E⟧s} var(E)

(e,f) = open(); p {e, f} ∅
close(E1,E2); p {⟦E1⟧s, ⟦E2⟧s} var(E1,E2)
send(a,E1,E2); p {⟦E1⟧s} var(E1,E2)

Ün
i=1 xi = receive(ai,Ei): pi

{xi ∣ 1 ≤ i ≤ n}
∪{⟦Ei⟧s ∣ 1 ≤ i ≤ n}

⋃n
i=1 var(Ei)

otherwise ∅ ∅

Table 2.1: Sets of immediate writes and immediate reads of programs executing from a state
(s, h, k).

Lemma 2.1 For each well-formed state σ and program p, if there are p′, σ′ such that
p, σ⇒ p′, σ′ then σ′ is well-formed.
Proof Assume that p, σ ⇒ p′, σ′, that σ′ = (s′, h′, k′) and that σ = (s, h, k) is well-
formed. We need to prove that σ′ satisfies (Channel), (Irreflexive) and (Involutive). Since
they are solely properties of endpoints, all the cases that do not modify the endpoint heap
trivially produce well-formed states from well-formed states. Moreover, since the contents
of the queue are not important in the axioms, the cases of send and receive are straight-
forward as well. This leaves us with open and close.

In the case of open, since the new endpoints ε, ε′ are allocated in the endpoint heap at
the same time and (Channel) held on σ, it still holds on σ′.

Suppose that (Irreflexive) does not hold anymore, and let ε be such that mate(k′, ε) = ε.
The misbehaving endpoint cannot be one of the newly allocated ones since they clearly do
not violate this axiom, nor can it be one of the other endpoints since σ is supposed to be
well-formed. This leads to a contradiction.

Similarly, (Involutive) only needs to be verified on the newly allocated endpoints, on
which it does hold.

The case of close is straightforward, as it can be shown that any substate of a well-
formed state is itself well-formed. ◻

Semantic equivalence of programs Let us now show some basic properties of the
programming constructs. For instance, one should be able to prove that “;” is associative and
that “+”, “◻” and “∥” are associative and commutative. This calls for a notion of program
equivalence; we take as a basis for such a notion a coarse denotational semantics based on
the set of reachable states.

41

2.2. Semantics

Definition 2.1 (Program equivalence) A program p denotes a partial function

⟦p⟧ ∶ State ⇀ ℘(State ⊎ {OwnError,MsgError})
σ ↦ {σ′ ∣ p, σ⇒∗ skip, σ′} ⊎ {error ∣ p, σ⇒∗ error}

Two programs p and q are equivalent, written p ∼ q, if ⟦p⟧ = ⟦q⟧.

Note that we only take into account final configurations skip, σ and errors in this defini-
tion. The following lemma groups together some typical equivalences between programs.

Lemma 2.2 For all programs p, p1, p2 and p3, the following equivalences hold:

p1 ∥ (p2 ∥ p3) ∼ (p1 ∥ p2) ∥ p3 p1 ∥ p2 ∼ p2 ∥ p1 skip ∥ p ∼ p

p1 + (p2 + p3) ∼ (p1 + p2) + p3 p1 + p2 ∼ p2 + p1 p + p ∼ p

p1; (p2; p3) ∼ (p1; p2); p3 skip;p ∼ p
Proof Straightforward by induction on the structure of the programs involved. ◻

42

C

Dialogue systems

Communicating finite-state machines (CFSM for short) are a widely studied model of com-
municating systems and protocols in general. Dialogue systems are communicating systems
consisting of two CFSMs communicating over a bi-directional FIFO channel modelled by
two buffers. They can be used to specify the protocols followed by the communication chan-
nels of a message-passing program as defined in the previous chapter. In all generality, the
buffers may be bounded or unbounded, perfect or lossy. We confine our study to unbounded
perfect buffers, for the reasons detailed in Section 1.2.3.

Channel contracts are a special case of dialogue systems. They have been used to specify
all the inter-process communications of the Singularity OS project. They were introduced
by Fähndrich et al. in the paper “Language support for fast and reliable message-based
communication in Singularity OS” [FAH+06], along with sufficient syntactic conditions to
ensure some safety properties. However, the lack of formal semantics lead to some bugs
being discovered later on by Stengel and Bultan [SB09] in published contracts of Singular-
ity. Whenever we use the term “Singularity contracts,” and unless specified otherwise, we
refer to contracts which satisfy the constraints imposed by Singularity in their fixed version
by Stengel and Bultan.

We show that, thanks to these restrictions, Singularity contracts are free from reception
errors, leaks and deadlocks, and have bounded communication buffers. Moreover, we show
that they have the half-duplex property: only one channel may be non-empty at any given
time in the execution of contracts. Figure 3.1 depicts the relationships between dialogue
systems, half-duplex dialogue systems, contracts, and Singularity contracts.

In this chapter, we give a formal semantics to these objects, and study the decidability
of the safety properties above, which include the ones sought after by Singularity. These
properties are decidable for half-duplex dialogue systems, a result that follows directly from
the fact that such systems have a decidable reachability set [CF05]. We will show that these
properties are undecidable for contracts in general, and that they can be proved to always
hold for Singularity contracts.

We will later use contracts as helpers to prove message passing programs in Chapter 5,
and we will formally connect the properties of contracts to those of the programs that abide
by them in Chapter 6.

We begin by a general presentation of communicating finite-state machines.

43

3.1. Communicating systems

..

DS

.

Ctt

.

HD

.

S

Figure 3.1: Relationships between dialogue systems (DS), half-duplex dialogue systems
(HD), contracts (Ctt), and Singularity contracts (S).

..q..qa . qb.
1?a

.
1?b

.

2!a

.

2!b

(a)

..q0.. q1. q2. q3. qf. 1!a. 1!b. 2?a. 2?b

(b)

Figure 3.2: A pair of communicating machines.

3.1 Communicating systems

3.1.1 Definition

Figure 3.2 presents a communicating system made of two machines and two buffers (1 and
2). Figure 3.2a depicts a copycat machine that copies everything that is received on buffer
1 onto buffer 2; the CFSM of Figure 3.2b starts in state q0, sends two messages a and b on
buffer 1 and then receives them back on buffer 2. These two machines may interact; at the
end of their interaction, the first one will be in state q again, the second one in qf , and all
the messages will have been consumed. As we will shortly see, (q, qf) is a good candidate
to be a final state of this system.

Definition 3.1 (Communicating finite-state machine) A communicating (finite-state)
machine (CFSM for short) is a 5-tuple (Σ,B,Q, q0, T) where:

• Σ is a finite alphabet of messages;

• B is a finite set of buffers;

44

Chapter 3. Dialogue systems

• Q is a finite set of control states;

• q0 ∈ Q is the initial control state;

• T ⊆ Q × (B × {?, !} ×Σ) ×Q is a (finite) set of transitions.

Given a CFSM M = (Σ,B,Q, q0, T), we write init(M) for q0.

Notations 3.1 In this chapter the set of the buffers of a machine will always be a finite
subset of N. We write ‽ for one of {?, !}. Elements of B × {?, !} × Σ are called actions
and are written e.g. n‽a instead of (n, ‽, a). We use τ to range over actions.

For instance, the machine depicted on Figure 3.2a is formally represented by the tuple
M0 = ({a, b},{1,2},{q, qa, qb}, q, T0) where the set of transitions T0 is

T0 = {(q,1?a, qa), (q,1?b, qb), (qa,2!a, q), (qb,2!b, q)} .

Similarly, the machine of Figure 3.2b is M1 = ({a, b},{q0, q1, q2, q3, qf}, q0, T1)}
where T1 = {(q0,1!a, q1), (q1,1!b, q2), (q2,2?a, q3), (q3,2?b, qf)}.

Let us group communicating machines together to form communicating systems.

Definition 3.2 (Communicating system) A (communicating) system S is a tuple S =
(F,M1, . . . ,Mn) of communicating machines Mi = (Σ,B,Qi, q0i , Ti) that share the
same alphabet of messages and the same set of buffers, together with a set F ⊆ ∏n

i=1Qi

of final states.

For instance, the system of Figure 3.2 is S0 = ({(q, qf)},M0,M1). The set of final
states does not matter yet, as no semantics is attached to it. Intuitively, when a communi-
cating system has reached a final state, its communications may be considered as finished,
and the channels can be closed.

Let us define straight away some syntactic notions on systems relevant for the rest of this
chapter.

Definition 3.3 (Determinism) A CFSM (Σ,B,Q, q0, T) is deterministic1 if for all states
q ∈ Q and all actions τ ∈ B ×{?, !}×Σ, (q, τ, q′) ∈ T and (q, τ, q′′) ∈ T implies q′ = q′′.

A system is deterministic if all its constituting machines are.

Definition 3.4 A state q of a CFSM (Σ,B,Q, q0, T) is a sending state (resp. a re-
ceiving state) if all the transitions leaving from it are sending (resp. receiving) ones:
∀(q, n‽a, q′) ∈ T. ‽ = ! (resp. ∀(q, n‽a, q′) ∈ T. ‽ = ?).

A state that has at least one sending and one receiving transitions is called a mixed
state.

1In the literature on communicating automata (see for instance the book by Bollig [Bol06]), determinism on
sending actions is often seen as the following stronger property: for all states q ∈ Q, if (q, n!a1, q1) ∈ T
and (q, n!a2, q2) ∈ T then a1 = a2 and q1 = q2. The definition of determinism for receive actions
coincides with ours. We have chosen a weaker definition because it is the one assumed by Singularity
contracts [FAH+06, SB09], and because it suffices, along with other restrictions detailed below, to ensure
the good properties enjoyed by Singularity contracts.

45

3.1. Communicating systems

Definition 3.5 (Positional) A CFSM (Σ,B,Q, q0, T) is positional if it has no mixed state.
A system is positional if all its constituting machines are.

The system S0 is both deterministic and positional.

3.1.2 Dialogue systems and contracts

Let us now introduce dialogue systems and contracts. A dialogue system is a communi-
cating system of only two machines and two buffers (1 and 2) where each buffer is used in
only one direction, and a contract is a compact representation of a dialogue system whose
CFSMs are each other’s dual.

Definition 3.6 (Dialogue system) A dialogue machine is a CFSM M = (Σ,B,Q, q0, T)
where B = {1,2}, and where the actions of T are either all of the form 1!a or 2?a, or all
of the form 2!a or 1?a.

A dialogue system is a communicating system D = (F,M1,M2) consisting of precisely
two dialogue machines Mi = (Σ,{1,2},Qi, q0i , Ti), where M1 sends on channel 1 and
receives on channel 2, and vice-versa (hence for each machine Mi, the set Ti contains
only actions of the form i!a or (3 − i)?a).

Since on each machine of a dialogue system the sending actions are all performed over
the same buffer, and similarly for the receiving actions, we will often omit buffer numbers
in their presentation. For instance, the example of Figure 3.2a can be depicted as:

..q..qa . qb.
?a

.
?b

.

!a

.

!b

The dual of a CFSM M is M where the actions n?a are changed in n!a and vice-versa.

Definition 3.7 (Dual actions, dual machines) The dual of an action n?a is n!a. The dual
of an action n!a is n?a. Given an action τ , we write τ̄ for its dual.

The dual of a set of transitions T is T̄ ≜ {τ̄ ∣ τ ∈ T}. The dual of a CFSM M =
(Σ,B,Q, q0, T) is dual(M) ≜ (Σ,B,Q, q0, T̄).

Note that the dual operation is involutive: ¯̄τ = τ , hence dual(dual(M)) = M . The
following definition formalises the channel contracts of Singularity [FAH+06] (without re-
strictions yet, see Definition 3.25). Note that the set of final states is specified within the
contract.

Definition 3.8 (Contract) A contract is a tuple (Σ,Q, q0, F, T) where T ⊆ Q× ({?, !}×
Σ) ×Q.

A contract is not a communicating system per se, but it is associated to a canonical one.

46

Chapter 3. Dialogue systems

Definition 3.9 Let C be a contract (Σ,Q, q0, F, T). The communicating machine asso-
ciated to C is

MC ≜ (Σ,{1,2},Q, q0,{(q,1?a, q′) ∣ (q, ?a, q′) ∈ T}∪{(q,2!a, q′) ∣ (q, !a, q′) ∈ T}) .

To the contract C, we associate the following dialogue system DC:

DC ≜ ({(q, q) ∣ q ∈ F},MC,dual(MC)) .

For instance, consider the contract C with final state end (depicted by a double frame):

..transfer..

wait

. end.

!cell

. !fin.

?ack

This contract denotes the following dialogue system, with final state {(end, end)}:

..transfer..

wait

. end.

2!cell

. 2!fin.

1?ack

..transfer..

wait

. end.

2?cell

. 2?fin.

1!ack

The properties of dialogue systems are extended to contracts in the obvious manner. For
instance, a contract is deterministic if the dialogue system that it denotes is. The dual
dual(C) of a contract C is also defined in a straightforward manner. Given a contract
C = (Σ,Q, q0, F, T), we write init(C) for q0 and finals(C) for F .

3.1.3 Semantics

In the following, and unless specified otherwise, S is a communicating system
(F,M1, . . . ,Mn) with Mi = (Σ,B,Qi, q0i , Ti) and B = {1, . . . , p}. A configuration
of a system (often written C) specifies the current state of each machine of the system and
the contents of the buffers:

Definition 3.10 (System configuration) Given a system S where ∣B∣ = p, the set of con-
figurations of the system is (∏n

i=1Qi) × (Σ∗)p.

We distinguish three particular kinds of configurations: the initial configuration, final
ones, and stable ones, where all buffers are empty. We write ␣ for the empty word.

Definition 3.11 (Initial configuration) The initial configuration of the system is
⟨q01 , . . . , q0n , ␣, . . . , ␣⟩.

47

3.1. Communicating systems

Definition 3.12 (Final configuration) A configuration ⟨q1, . . . , qn,w1, . . . ,wp⟩ is final if
(q1, . . . , qn) ∈ F .

Definition 3.13 (Stable configuration) A configuration ⟨q1, . . . , qn,w1, . . . ,wp⟩ is stable
if wi = ␣ for all i.

A communicating system dictates how to go from one configuration to the other.

Definition 3.14 (System transition relation) Given a communicating system S, the tran-
sition relation→S of S is defined as the union of the relations τÐ→S for τ ∈ ⋃n

i=1 Ti, where
⟨q1, . . . , qn,w1, . . . ,wm⟩

τÐ→S ⟨q′1, . . . , q′n,w′1, . . . ,w′m⟩ is defined as follows:

• if τ is a send action j!a then there is i ∈ {1, . . . , n} such that (qi, j!a, q′i) ∈ Ti,
w′j = wj ⋅ a, and q′k = qk and w′l = wl for all k ≠ i and l ≠ j;

• if τ is a receive action j?a then there is i ∈ {1, . . . , n} such that (qi, j?a, q′i) ∈ Ti,
wj = a ⋅w′j , and q′k = qk and w′l = wl for all k ≠ i and l ≠ j;

We write → and τÐ→ when S can be inferred from the context. A run of a system is a
sequence of consecutive transitions from the initial state:

Definition 3.15 (Run of a system) Given a system S, a run is a sequence of transitions
C0

τ1Ð→ C ′0, . . . ,Ck
τk+1ÐÐ→ C′k where k ≥ 0, C′i = Ci+1 and C0 is initial. The run is

accepting if C ′k is final. If k = 0, the run is simply C0; it is accepting if C0 is final.
A configuration is reachable if there is a run of the system that leads to it.

We write C0
τ1Ð→ C1

τ2Ð→ . . .
τkÐ→ Ck+1 or C0

τ1...τkÐÐÐ→
k+1

Ck+1 for a run C0
τ1Ð→

C1,C1
τ2Ð→ C2, . . . ,Ck

τkÐ→ Ck+1, sometimes omitting some configurations and writing
“⋅” instead. We write→∗ for the reflexive and transitive closure of→.

The accepting runs of our example S0 of Figure 3.2 correspond to all the interleavings
of the sequences of actions 1!a 1!b 2?a 2?b and 1?a 2!a 1?b 2!b that respect the precedence
of a send over the corresponding receive, for instance

⟨q, q0, ␣, ␣⟩
1!aÐ→ ⋅ 1!bÐ→ ⟨q, q2, ab, ␣⟩

1?aÐÐ→ ⋅ 2!aÐ→ ⟨q, q2, b, a⟩
1?bÐÐ→ ⋅ 2!bÐ→ ⟨q, q2, ␣, ab⟩

2?aÐÐ→

⋅ 2?bÐÐ→ ⟨q, qf , ␣, ␣⟩

3.1.4 Safety properties

Let us describe the properties we are interested in for dialogue systems in general, and
contracts in particular. As they are not specific to the class of dialogue systems, we define
them for the more general class of communicating finite-state machines.

A bounded system is one in which there exists a bound on the size of the queues. For
instance, the system of Figure 3.2 is bounded, but a system that contains the following
machine is not, because this machine can enqueue arbitrarily many a messages in buffer 1:

48

Chapter 3. Dialogue systems

..q0..

1!a

Definition 3.16 (Bounded system) A system is k-bounded if, for all reachable configura-
tions ⟨q1, . . . , qn,w1, . . . ,wp⟩, ∣wi∣ ≤ k for all i.

A system S is bounded if there exists a bound k ∈N such that S is k-bounded.

A system is in a deadlock state if each participant is waiting for one of the other partici-
pants to send a message. In this case, they are all stuck, waiting for each other’s messages.
Note that the special case where all participants are in a final state is not a proper deadlock
since the run of the system is finished. The system of Figure 3.2 is deadlock-free in that
sense, but the one below is not (⟨q1, q′0, a, ␣⟩ is a reachable deadlock configuration: the
second machine tries to receive from an empty channel).

({(q1, q′1)}, ..q0.. q1. 1!a , ..q′0.. q′1
. 2?a)

Definition 3.17 (Deadlock-free system) We say that a configuration
⟨q1, . . . , qn,w1, . . . ,wp⟩ of a system is a deadlock configuration if:

1. all qi are receiving states

2. all the inspected queues are empty:

∀j. (∃i.∃a.∃q′. (qi, j?a, q′) ∈ Ti)⇒ wj = ␣ .

A configuration C is a proper deadlock if C is deadlock and not final. A system is
deadlock-free if no reachable configuration is a proper deadlock.

A system is faulty if there is a possibility that, at some point in time, one participant is
ready to receive certain messages but an unexpected one is at the head of one buffer. Again,
the example depicted in Figure 3.2 is fault-free, whereas the one below can reach the faulty
configuration ⟨q1, q′0, a⟩ (the second machine is expecting a b message).

({(q1, q′1)}, ..q0.. q1. 1!a , ..q′0.. q′1
. 1?b)

Definition 3.18 (Fault-free system) We say that a configuration ⟨q1, . . . , qn,w1, . . . ,wp⟩
of a system is an unspecified reception configuration if there are i, j and a such that

• wj = a ⋅w′j;

• {a′ ∣ (qi, (j?a′), q′) ∈ Ti} ≠ ∅ and

• a ∉ {a′ ∣ (qi, (j?a′), q′) ∈ Ti}.

49

3.2. Verification of communicating systems

A system is fault-free if none of its reachable configurations leads to an unspecified
reception.

Finally, the final configurations of a system should be reachable only when all the com-
munications have been resolved and there is no message left in the queues (that is, final
configurations should be stable). This is the case for the system of Figure 3.2 if we take as
final state {(q, qf)}, but not if we take for instance {(q, q1)}, as the unstable configuration
⟨q, q1, ␣, a⟩ would then be considered final.

Definition 3.19 (Leak-free system) A system is leak-free if all accepting runs end in a
stable configuration.

Note that a system without accepting states is automatically leak-free.

3.2 Verification of communicating systems

3.2.1 Simulation of a Turing machine by a dialogue system

Unfortunately, given an arbitrary contract, one cannot decide whether it satisfies any of the
safety properties listed in the previous section. The main reason behind this is that CFSMs
can simulate Turing machines, which was first noticed by Brand and Zafiropulo [BZ83]; the
main idea of the proof is that an unbounded buffer can act as the tape of a Turing machine.
This result was later extended to dialogue systems of the form (M,M) (so-called identical
communicating processes) by Finkel and McKenzie [FM97]. We extend it here to contracts,
that is systems of the form (M,dual(M)). All the undecidability results presented in the
next section are based on the encoding of Turing machines into dialogue systems presented
below.

Definition 3.20 (Turing machine) A Turing machine is a tuple (Σ,Q,T,◻, q0, qf)
where:

• Σ is the tape alphabet;

• Q is the finite set of states;

• T ⊆ Q ×Σ ×Q ×Σ × {⊲,⊳} is the transition relation;

• ◻ ∉ Σ ∪Q is the blank symbol;

• q0 ∈ Q and qf ∈ Q are respectively the initial and final states.

A configuration of a Turing machine (Σ,Q,T,◻, q0, qf) is a word from

(Σ × {◻})∗(Σ ×Q)(Σ × {◻})∗({(◻,◻)})

that accounts for the current state of the machine, the current word written on the tape and the
position of the head. We assume without loss of generality that every Turing machine starts

50

Chapter 3. Dialogue systems

on an empty tape, that the right end of every configuration is marked by (◻,◻), that the
machine never reaches the final control state qf until the very end, and that when this hap-
pens the tape is again empty. The initial and final states are thus respectively (◻, q0)(◻,◻)
and (◻, qf)(◻,◻).

The encoding of a Turing machine M using a dialogue system intuitively uses the buffers
to store the current configuration. One of the machines then simulates the transitions of M,
while the other ones acts as a mere copycat. This allows the simulating machine to cycle
freely through the configuration to find the position of the head at each transition, perform
the transition locally, as this only requires the memory of the immediate surroundings of
the head, and cycle again to repeat this process.

Let M = (ΣM ,QM , TM ,◻, q0, qf) be a Turing machine. The dialogue system that will
model M is S = (F,Msim,Mcat) as defined below. Intuitively, using ri to denote an
element of Q ∪ {◻}, a configuration

CM = (a1, r1)⋯(ak, rk) (◻,◻)

will be coded by the system’s global configuration (qsim, qcat,w1,w2), where w1 ⋅w2 is a
rotation of CM, that is there exists a j such that

w1 ⋅w2 = (aj+1, rj+1)⋯(ak, rk) (◻,◻) (a1, r1)⋯(aj , rj) .

The copying machine The copycat machine Mcat is defined as

((Σ × (Q ∪ {◻})),{1,2},{icat, qcat, endcat} ∪ {(a, r)}(a,r)∈Σ×(Q∪{◻}), icat, Tcat) .

Its structure, depicted in Figure 3.3, is simple. Following the notations of Bollig [Bol06],
we write a for (a,◻) and a←q for (a, q). Its modus operandi is to copy everything from
its input buffer to its output buffer, except for ◻←qf , which leads Mcat into the state endcat
from which no transition emanates. In a run of the whole system, nothing will be left to
receive when this message is received, and endcat will be the final state of Mcat. This
machine will be the first to make a transition in the whole system, filling the tape with the
initial configuration of the Turing machine (◻, q0)(◻,◻).

The transition machine Anticipating the needs of the proofs of the results of the next
section, we will build a machine that is deterministic, positional and synchronising (as is
Mcat). Let us present how to encode M’s transitions.

Consider a transition τ = (qi, ai, qi′ , ai′ ,⊲) ∈ T wherein the head is moving to the left.
This will be encoded by the part of the CFSM described in Figure 3.4. This fragment of
CFSM can be decomposed into the left and right parts. Which one is triggered depends on
where the head of the Turing machine is positioned on the tape: if it is on the first letter
then the left branch is taken, otherwise the right one is taken and the letter that was read is
remembered by the control state. This allows the CFSM to travel deterministically along
the tape while searching for the head.

Let us describe the second case, the first one being similar. The tape is unrolled until the
head is found: if when in the control state ah the machine receives another headless letter

51

3.2. Verification of communicating systems

..icat...

qcat

.

aq1

.

b◻

.

aq1

. ⋱.. endcat.

! ◻←q0
.

! ◻

.

?a←q1

.

!a←q1

.

?b

.

!b

.

?a←q2
. !a←q2.

? ◻←qf

.

! ◻←qf

Figure 3.3: A few of the transitions of the copycat machine.

..qsim.. ah.

⋯

.

⋯

.......

!ai′

.
?ah

.
?ai←qi

.
?ai←qi

.
?ah

.

?ah′

.
!ah←qi′

.
! ◻←qi′

.

!ai′

Figure 3.4: Encoding of a transition of M moving the head to the left.

(ah′ ,◻), ah is sent back (not pictured here) and the machine moves in state ah′ . The process
is repeated until the head is found. When this is the case, that is when ai←qi is received, and
assuming the previous letter was ah, the machine sends back ah←qi′ , effectively moving
the head to the left and updating the control state of the Turing machine. The final step is
to send the updated letter under the previous location of the head ai′ .

Not pictured in the figures are transitions that reset the transition machine whenever we
reach the end of the tape: from every control state ah there is a transition back to qsim
labelled by ?◻, and there is a loop from qsim to qsim consisting of two transitions: qsim

?◻Ð→
⋅ !◻Ð→ qsim. There is also a final transition qsim

?◻←qfÐÐÐ→ endsim.
Consider now a transition τ = (qi, ai, qi′ , ai′ ,⊳) ∈ T wherein the head is moving to the

right. This will be encoded by the fragment of the CFSM described in Figure 3.5. The
steps are similar to the left transition case, except that we have to handle the case where
we have to extend the tape to the right in addition to the cases where the head is at the
beginning of the tape. Consider for instance the loop going to the right and coming back
to qsim from below. This time, ah is remembered only because the forwarding mechanism
has to be embedded in every transition to obtain a deterministic machine. It is immediately

52

Chapter 3. Dialogue systems

..qsim.. ah.

⋯

.

⋯

............ ?ah. ?ai←qi.

?ah

.

?ah′

. !ah. !ai′.

?aj

.

?◻

.

!aj←qj

.

! ◻←qi′

.

!◻

.?ai←qi .!ai′ .

?aj

.

?◻

.

!aj←qj

.

! ◻←qi′

.

!◻

Figure 3.5: Encoding of a transition of M moving the head to the right.

sent back unchanged when the head is found, followed by the updated letter ai′ . Then we
try to read the next letter. In the case at hand, the end of the tape has been reached and we
get ◻. The new head of the Turing machine is positioned on the final character (by sending
back (◻, qi′)) and we end the sequence by sending the terminating symbol.

Theorem 3.1 For every Turing machine M there is a deadlock-free, positional and de-
terministic dialogue system that reaches its final state if and only if M halts.
Proof The dialogue system ({endcat, endsim},Mcat,Msim) has all the properties that
the theorem asks for. ◻

3.2.2 A decidable class: half-duplex systems

A system is half-duplex (or has the half-duplex property) if there may never be more than
one non-empty buffer at the same time in any of the executions. A classical physical example
is the one of a group of persons communicating via walkie-talkies: there are never two
persons speaking at the same time.

Definition 3.21 (Half-duplex system) A system is half-duplex if, for all reachable config-
uration ⟨q1, . . . , qn,w1, . . . ,wp⟩, there is at most one i ∈ {1, . . . , p} such that wi ≠ ␣.

Half-duplex systems are known to have a regular reachability set [CF05]; in particular,
Cécé and Finkel have shown that all the safety problems we are interested in are decidable
in polynomial time (on the size of the alphabet and the number of control states of each
individual machine) on half-duplex dialogue systems, and that the half-duplex property
itself is decidable in polynomial time.

Intuitively, every execution C0
αÐ→ C2 of a half-duplex dialogue system can be turned

into another execution C0
α1Ð→ C1

α2Ð→ C2 that ends in the same configuration such that
the run C0

α1Ð→ C1 is 1-bounded, C1 is stable (its buffers are empty, see Definition 3.13),
and C1

α2Ð→ C2 consists only of send actions by one of the two machines. This sequence of
sending actions is performed by a finite-state machine, thus it can be described by a regular

53

3.3. Contracts

language. This shows that the language contained in the only non-empty queue of C2 is in
fact always regular. Let us remember this as the following lemma.

Lemma 3.1 ([CF05]) Let C be a reachable configuration of a half-duplex system S and
α be an execution that reaches C from the initial configuration C0 of S. There exist C′,
α1 and α2 such that:

1. C0
α1Ð→ C′

α2Ð→ C,

2. the execution C0
α1Ð→ C′ is 1-bounded and C is stable, and

3. α2 consists only of sending actions.

To see why the class of half-duplex systems is recursive, Cécé and Finkel give the fol-
lowing lemma about non-half-duplex systems, which we will also use to characterise half-
duplex contracts in the next section.

Lemma 3.2 ([CF05]) A dialogue system (F,M1,M2) is not half-duplex if and only if
there exist two transitions (q1,1!a, q′1) ∈ T1 and (q2,2!b, q′2) ∈ T2 such that the state
⟨q1, q2, ␣, ␣⟩ is reachable by a 1-bounded execution.

Intuitively, a system that is not half-duplex can reach a stable configuration from a 1-
bounded execution from which both machines can perform a sending action. This condition
is also obviously sufficient for the system not to be half-duplex, since if both machines
perform their respective send, the two corresponding buffers will become non-empty.

Channel systems with errors In the case of a finite alphabet of messages, unreliable (or
lossy) channel systems are known to have good decidability properties. Indeed, given a sys-
tem where all the channels involved are lossy, one can decide whether a given configuration
is reachable or not, from which the decidability of many safety problems follows [AJ93].

If messages arrive out-of-order, then CFSMs are equivalent to counter machines (because
the queue is then a mere multiset of messages, and sending and receiving are equivalent to
respectively incrementing and decrementing the counter associated to the corresponding
message). In particular, if we cannot test the emptiness of the queue, that is if attempting
to receive on an empty queue is blocking, then it is equivalent to a vector addition system
with states (VASS). In this case, the reachability problem (along with many others) is also
decidable [May81, ST77]. If there exists a non-blocking receive primitive, the system can
encode counter machines, which are as powerful as Turing machines [Min67] (starting from
2 counters, hence two buffers).

3.3 Contracts

3.3.1 Syntactic sufficient conditions

Half-duplex contracts As we will see in the upcoming sections, contracts, restricted as
they are by their symmetric form, still retain the power of Turing machines from dialogue

54

Chapter 3. Dialogue systems

systems (Theorem 3.2). However, simple syntactic restrictions on contracts are sufficient
(but not necessary) to ensure fault, leak, and deadlock-freedom. These restrictions imply in
particular that the system described by the contract must be half-duplex, which shows that
we need not restrict ourselves to contracts to obtain decidability, where we could have used
any half-duplex dialogue system. The restrictions include the fact that a contract should be
deterministic and positional. On contracts, this is already enough to ensure the half-duplex
property. The proof relies essentially on the following lemma.

Lemma 3.3 Let C = (Σ,Q, q0, F, T) be a deterministic and positional contract. For all
execution ⟨q0, q0, ␣, ␣⟩

αÐ→
∗
⟨q1, q2, ␣, ␣⟩ that ends in a stable state, q1 = q2.

Proof Let us first remark that if α leads to a stable configuration by a 1-bounded run, then
∣α∣ is even, and α consists of consecutive sends n!a and receives n?a for some n and a.
Moreover, by Lemma 3.1 and since the configuration resulting from the execution of α is
stable, there exists a 1-bounded execution of the system associated to C that produces the
same state. We can thus assume without loss of generality that α is 1-bounded.

Let us show the lemma by an induction on the size of α. If ∣α∣ = 0, then q1 = q2 = q0.
Suppose now that n > 0 and for all 1-bounded execution β of size strictly less than n,

if ⟨q0, q0, ␣, ␣⟩
β
Ð→
∗
⟨q, q′, ␣, ␣⟩ then q = q′. If ∣α∣ = n, there is n and a such that α =

β ⋅ n!a n?a, and by induction hypothesis,

⟨q0, q0, ␣, ␣⟩
β
Ð→
∗
⟨q, q, ␣, ␣⟩ n!aÐÐ→ ⋅ n?aÐÐ→ ⟨q1, q2, ␣, ␣⟩ .

In the last two steps, either the first machine is sending and the second receiving, or
the opposite. Suppose we are in the first case, the other one being symmetric. Since C is
deterministic, there is only one outgoing transition from q with label !a, hence there is only
one transition from q with label ?a in the dual machine. Hence, both machines made the
step to the same next state and q1 = q2. ◻

Lemma 3.4 (Half-duplex contracts) A contract that is both deterministic and positional
is half-duplex.
Proof Let C = (Σ,Q, q0, F, T) be a deterministic and positional contract. Suppose that
C is not half-duplex. By Lemma 3.2, there is a stable configuration C = ⟨q1, q2, ␣, ␣⟩
accessible by a 1-bounded run ⟨q0, q0, ␣, ␣⟩

αÐ→
∗
⟨q1, q2, ␣, ␣⟩ such that (q1, !a, q′1) ∈ T and

(q2, !b, q′2) ∈ T̄ , hence (q2, ?b, q′2) ∈ T , for some a, b, q′1, q′2.
By Lemma 3.3, q1 = q2, hence there is in fact both a sending and a receiving transition

from q1 in C, thus q1 is not positional, which contradicts our hypothesis that C is. ◻
The converse is not true in general: there are half-duplex contracts that are neither deter-

ministic nor positional. However, it becomes true for deterministic trimmed contracts.

Definition 3.22 (Trimmed contract) A contract C = (Σ,Q, q0, F, T) is trimmed if ev-
ery control state is reachable from q0 in the oriented graph G = (Q,T ′) formed by the
contract’s states and transitions, where

T ′ ≜ {(q, q′) ∣ ∃τ. (q, τ, q′) ∈ T} .

55

3.3. Contracts

A non-trimmed contract is one in which there are control states that are “disconnected”
from the rest of the control states. Any non-trimmed contract may be turned into a trimmed
one with the same operational meaning simply by deleting those states.

Lemma 3.5 For every deterministic trimmed contract C, C is half-duplex if and only if it
is positional.
Proof The reverse implication is already proved by Lemma 3.4. Let us prove the direct
implication.

Let us notice first that in the dialogue system associated to a trimmed contract C =
(Σ,Q, q0, F, T), ⟨q, q, ␣, ␣⟩ is always reachable. Indeed q ∈ Q is reachable in the ori-
ented graph formed usingQ as vertices and T as edges, so there is a sequence of transitions
(q0, τ1, q1), . . . , (qn−1, τn, q) from q0 to q. The following execution is thus valid, where
τ ′ = τ for sending actions and τ ′ = τ̄ for receiving ones:

⟨q0, q0, ␣, ␣⟩
τ ′1Ð→ ⋅

τ̄ ′1Ð→ ⟨q1, q1, ␣, ␣⟩⋯⟨qn−1, qn−1, ␣, ␣⟩
τ ′nÐ→ ⋅

τ̄ ′nÐ→ ⟨q, q, ␣, ␣⟩

Suppose that C is not positional. There is q ∈ Q and a1, a2, q1 and q2 such that
(q, !a1, q1), (q, ?a2, q2) ∈ T . Since ⟨q, q, ␣, ␣⟩ is reachable, the following execution is
valid:

⟨q0, q0, ␣, ␣⟩→∗ ⟨q, q, ␣, ␣⟩
1!a1ÐÐ→ ⟨q1, q, a1, λ⟩

2!a2ÐÐ→ ⟨q1, q2, a1, a2⟩

This execution is not half-duplex. ◻
Even trimmed half-duplex contracts are not necessarily deterministic. For instance, the

following contracts are not deterministic but half-duplex nonetheless:

..q..
q1

.
q2

.
!a

.

!a

..q..
q1

.
q2

. q′.
!a

.

!a

.
?b

.

?b

Fault-free contracts Deterministic and positional contracts have more properties than
just being half-duplex: they are fault and deadlock-free. Before proving this claim, let us
show that we cannot say the same of non-deterministic or non-positional contracts. For
instance, the following non-deterministic contract is not fault-free:

..q0..

q1

.

q′1

. q2.

!a

.

!a

.

!b

.

!b′

The first machine can send a, then b, while the dual one receives a and then tries to
receive b′ whereas b is available. Non-positional contracts also embed a form of choice
that can harm the safety properties, since in a non-positional state both machines may make
dissonant moves.

56

Chapter 3. Dialogue systems

..q..

q1

.

q′1

. q2.

!a

.

?b

.

?b

.

!a′

In the example above, the first machine may send a then wait for b, while the second one
sends b and then wrongfully tries to receive a′ whereas a is available.

Lemma 3.6 (Fault-freedom) For every contract C, if C is deterministic and positional
then C is fault-free.

Proof If C is deterministic and positional, it is half-duplex (Lemma 3.4). From
Lemma 3.2, all executions are equivalent to a 1-bounded execution of the system fol-
lowed by a sending-only phase. If a fault occurs, it must be during the first phase. Dur-
ing this phase, reachable states are of the form ⟨q, q, ␣, ␣⟩ (Lemma 3.3), ⟨q′, q, a, ␣⟩ with
(q, !a, q′) ∈ T or (symmetrically) ⟨q, q′, ␣, a⟩ with (q, ?a, q′) ∈ T . In the first case, queues
are empty so there can be no fault. In the second and third case, the machine that did not
perform the send is obviously about to receive a since its dual was able to send it from the
same state, so there is no possible fault either. ◻

Deadlock-free contracts Similarly, the contracts depicted below are respectively non-
deterministic and non-positional and both exhibit a deadlock.

..q0..

q1

.

q′1

. q2.

!a

.

!a

.

?b

.

!b

..q0..

q1

.

q′1

.

q2

.

q′2

. q3.

!a

.

?b

.

?b

.

!a

.

?c

.

!c

In the second example, the first machine can perform the sequence of actions !a?b and
its dual !b?a. Thus, they get both stuck waiting for c in the configuration ⟨q2, q′2, ␣, ␣⟩.

Lemma 3.7 (Deadlock-freedom) For every contract C, if C is deterministic and posi-
tional then C is deadlock-free.

Proof The proof follows the same reasoning as for Lemma 3.6. ◻

Leak-free contracts Being deterministic and positional is not sufficient for a contract to
be leak-free, because there could be a loop consisting only of sends and involving a final
state. In that case, the system could stop before the receiving machine has gone as many
times around the loop as the sending, because both machines would be in a final state, like
in this contract:

57

3.3. Contracts

..q..

!a

To enforce bounded communications (see Lemma 3.9), S♯ requires that all cycles in a
given contract contain at least one send and one receive; we can require the same condition,
restricted to those cycle containing a final state, to prevent leaks. We represent this by the
notion of synchronising states of a dialogue machine. They are the states q such that each
cycle going through qmust contain at least one sending action and one receiving action. The
name “synchronising” comes from the intuition that such a state q forces the two machines
to synchronise between two consecutive stops at q. To simplify the presentation, we only
define this notion for dialogue machines, where the criterion is easier to express, although
it could be extended to arbitrary machines and systems.

Definition 3.23 (Cycles) Let M = (Σ,B,Q, qinit , T) be a dialogue machine. A cycle in
M is a tuple of control states (q0, . . . , qn) (n ≥ 1) where q0 = qn and ∀0 ≤ k < n.∃τ ∈
B × {?, !} ×Σ. (qk, τ, qk+1) ∈ T .

A cycle is a sending (resp. receiving) cycle if all its transitions are sending (resp. re-
ceiving) ones.

A cycle (q0, . . . , qn) goes through q if ∃0 ≤ i ≤ n. q = qi.

Definition 3.24 (Synchronising states) A state q of a dialogue machine M is synchronis-
ing if no sending or receiving cycle of M goes through it.

Note that in dialogue systems that are constructed from a contract, a state of one of the
dialogue machines is synchronising if and only if the same state is synchronising in the
other machine. We can thus talk freely about synchronising states of contracts, and in fact
this property can be directly checked on the contract itself. For instance, all the states of
this contract are synchronising:

..q..qa . qb.
1?a

.
1?b

.

2!a

.

2!b

Non-deterministic contracts may hide a leak as well. In the contract below, if each ma-
chines makes a different choice then they end in the same final state and can stop in the
configuration ⟨q2, q2, a′, ␣⟩ where there is still a′ in one of the queues.

..q0.. q1. q2. !a. !a′.

!a

58

Chapter 3. Dialogue systems

The same is true of non-positional contracts. In the following contract, each machine can
take a different branch, which leaves one amessage in each queue of the final configuration
⟨q1, q1, a, a⟩.

..q0.. q1.

!a

.

?a

However, the three conditions together suffice to ensure leak-freedom.

Lemma 3.8 (Leak-freedom) For every contract C, if C is deterministic, positional and
all its final states are synchronising, then C is leak-free.

Proof From Lemma 3.2, each execution of C from its initial state is equivalent to a 1-
bounded execution that ends in a stable state C, followed by a sending cycle in one of
the machines. As there is no sending or receiving cycle surrounding a final state, if both
machines are in the same control state then the final sending cycle is empty. The final
configuration is thus stable, hence C is leak-free. ◻

The S♯ language additionally requires non-final states to be synchronising as well. As
we are about to see, this ensures that communications are bounded.

Definition 3.25 (Singularity contracts) We call Singularity contract any contract that is
deterministic, positional, and whose control states are all synchronising.

In a first version, the S♯ compiler required all contracts to be deterministic and have
only synchronising states, but not to be positional. Hence, contrarily to their claim, these
contracts could lead to deadlocks, as remarked by Stengel and Bultan [SB09]. The definition
above corresponds to the fixed version.

Bounded contracts As mentioned above, if we are more restrictive and assume that all
the cycles of the contract contain at least one send and one receive, then the contract is
bounded.

Lemma 3.9 (Boundedness) For every contract C, if C is deterministic, positional and all
its states are synchronising, then C is bounded.

The bound is moreover computable in linear time in the number of transitions in the
contract.

Proof Let us assume without loss of generality that C is a trimmed contract, and show
that the maximum size of the buffers in a run of the contract C corresponds exactly to the
maximum number of consecutive sending transitions of C, or to the maximum number of
consecutive receiving transitions of C, whichever is the greatest. Since all the control states
of C are synchronising, both numbers are finite. Let us write N for their maximum.

59

3.3. Contracts

• Let us show that this bound is reached: N corresponds to a sequence from a control
state q ofM. By Lemma 3.5, ⟨q, q, ␣, ␣⟩ is a reachable configuration of the system as-

sociated toC. IfN corresponds to a sequence of sending transitions q
!a1Ð→ ⋯ !aNÐÐ→ q′,

then ⟨q′, q, a1⋯aN , ␣⟩ is reachable. Symmetrically, if N corresponds to a sequence

of receiving transitions q
?a1ÐÐ→ ⋯ ?aNÐÐ→ q′, then ⟨q, q′, ␣, a1⋯aN ⟩ is reachable.

• Suppose now that a configuration ⟨q1, q2,w1,w2⟩ is reachable, with for instance
∣w1∣ = n1 and ∣w2∣ = n2. If n1 > 0, then since C is half-duplex by Lemma 3.4,
w2 = ␣. By Lemma 3.4 again and Lemma 3.3, the configuration can be reached from
another configuration ⟨q, q, ␣, ␣⟩ by a sequence of sending transitions only. Thus,
n1 ≤ N . If n1 = 0 and n2 > 0 the reasoning is similar. ◻

Let us summarise the results obtained in this section.

Corollary 3.1 For every contract C, if C is deterministic and positional then it is fault
and deadlock-free. If moreover all its final states are synchronising then it is leak-free,
and if all its states are synchronising it is bounded.
Proof Direct consequence of Lemmas 3.6,3.7,3.8 and 3.9. ◻

In particular, Singularity contracts are bounded and free from faults, deadlocks and leaks.

3.3.2 Contract verification is undecidable

Theorem 3.2 The following six problems are all undecidable:

1. Input: A synchronising and deterministic contract C.
Output: Whether or not C is leak-free.

2. Input: A synchronising and positional contract C.
Output: Whether or not C is leak-free.

3. Input: A synchronising and deterministic contract C.
Output: Whether or not C is deadlock-free.

4. Input: A synchronising and positional contract C.
Output: Whether or not C is deadlock-free.

5. Input: A synchronising and deterministic contract C.
Output: Whether or not C is fault-free.

6. Input: A synchronising and positional contract C.
Output: Whether or not C is fault-free.

Proof We reduce each of these six problems to the halting problem of Turing machines
using Theorem 3.1 as a black box. Let M = (Σ,Q, T,◻, q0, qf) be a Turing machine, and
(F,Msim,Mcat) be the dialogue system equivalent to M by Theorem 3.1.

60

Chapter 3. Dialogue systems

1. Consider the following contract Cleak, where a, b ∉ Σ, the incoming arrow into
Msim goes to isim, and the outgoing arrow comes from endsim, and similarly for
dual(Mcat):

..start...Msim

.. dual(Mcat).

end

.!a . ?a.?a . !a.

!b!b

.

!b

This contract is synchronising and deterministic. Let us show that it exhibits a leak if
and only if M halts. Suppose that M halts; the configuration ⟨endsim, endcat, ␣, ␣⟩
is then reachable. From this configuration, the first machine will send b twice, but
only one b will be received by the second machine before the system comes to a halt
in the final configuration ⟨end, end, ␣, b⟩, which is not stable.

Conversely, suppose that Cleak has a leak. A run of the dialogue system associated to
Cleak corresponds either to both machines having taken the left branch and executing
in Msim, or to both of them having taken the right branch, thus executing in the
copycat machine, or, and this is the behaviour that simulates a run of the Turing
machine, each one taking a separate way. In the first as well as the second case, it
is straightforward to check that there is no leak, thanks to the construction of Msim

and Mcat. So it must be that we are in the last case, hence that ⟨endsim, endcat, ␣, ␣⟩
is reachable, which is equivalent to saying that M terminates by Theorem 3.1. This
shows that checking whether a synchronising and deterministic contract is leak-free
is undecidable.

2. Following the same idea, one may build the following synchronising and positional
contract:

..start..Msim

. dual(Mcat).

end

.!a . !a.

!b!b

.

!b

This contract has a leak if and only if M halts, and it is synchronising and positional
(but not deterministic).

3 & 4. One may prove in the same way that deadlock freedom is undecidable for synchro-
nising contracts, even if they are either deterministic or positional (but not both, as

61

3.3. Contracts

we will see next). It suffices to change the bottom part of the above contracts to the
following:

...⋯ . ⋯.Msim

. dual(Mcat).

end

.

!b

.

!b!b

The initial part of the contract eluded above can be either

..start...⋯ .. ⋯.!a . ?a.?a . !a

or

..start..⋯ . ⋯.!a . !a

By taking the first template, we obtain a synchronising and deterministic (but not
positional) contract that deadlocks if and only if the Turing machine M halts, and by
taking the second template we obtain a synchronising and positional (but not deter-
ministic) contract that deadlocks if and only if M halts.

5 & 6. With the same reasoning and initial templates, we prove undecidability of fault free-
dom for synchronising and deterministic or positional contracts with the following
contract template:

...⋯ . ⋯.Msim

. dual(Mcat).

end

.

!b

.

!a

◻

Conclusion

Table 3.1 sums up our decidability results for contracts and dialogue systems.

62

Chapter 3. Dialogue systems

Re
str

ict
io

ns

Bo
un

de
d

Le
ak

-fr
ee

De
ad

lo
ck

-fr
ee

Fa
ul

t-f
re

e

Ha
lf-

du
pl

ex

None U U U U D
Half-duplex D D D D Yes
Det. & Pos. D D D D Yes

Contract U U U U D
Det. & Synch. Contract U U U U D
Pos. & Synch. Contract U U U U D

Det. & Pos. & Synch. Contract D Yes Yes Yes Yes

Table 3.1: Decidability results on dialogue systems. D: decidable U: undecidable, Yes: the
property is always true, Det.: deterministic, Pos.: positional, Synch.: final states
are synchronising. The first three lines consist of known results.

Contracts vs dialogue systems As this table shows, and perhaps surprisingly because
of their syntactically restricted nature, contracts are as undecidable as arbitrary dialogue
systems when it comes to the safety properties that we are interested in. Moreover, the
syntactic restrictions imposed on contracts in Singularity make the contracts half-duplex.
Since half-duplex dialogue machines already have all the required decidability properties,
and the class of half-duplex dialogue machines is recursive, one might as well abandon
contracts and use half-duplex systems instead.

However, this is not to say that contracts are useless as a class of communicating ma-
chines. Indeed one rarely needs more than contracts in practise. For instance, all the com-
munication protocols of the Singularity project, which forms a fully functional operating
system, have been expressed using contracts. Hence, our logic (defined in Chapter 5) and
our tool (described in Chapter 7) use contracts instead of general dialogue systems.

Session types Session types [THK94] are a type system for a variant of the pi-calculus,
where the types themselves may be seen as a kind of communicating system with primitives
for sending and receiving messages of a certain type, branching according to a message tag,
and recursion. In their structure, session types and contracts are very similar. One difference
is that, while contracts only specify the sequence of message tags that occur on a channel,
session types describe both the sequence of messages and the type of these messages. In a
way, they combine into one object both the contracts and the footprints of messages that we
will introduce in Chapter 5 and use to specify the type of our messages. Another difference
is that the final state of a session types is always a state from which no communication can
occur. Although this may seem mundane at first, this means that session types need not care
about leak-freedom: every possible final state is automatically synchronising.

It is worth noting that session types have been extended to the multiparty case, with an
arbitrary number of participants instead of two [HYC08], and even to parametrised inter-

63

3.3. Contracts

actions [YDBH10]. In particular, Deniélou and Yoshida recently provided an analysis of
multiparty communications that can, among other things, compute a bound on the size of the
channels of a pi-calculus process [DY10], whereas we analyse each bi-directional channel
separately. Extending contracts to the multiparty case is certainly an interesting perspec-
tive, as it would enable us to take into account causality information given by all channels
at once, and thus to perform a more accurate analysis.

64

C

Concurrent Separation Logics

This chapter recalls the formalism of separation logic applied to the study of concurrent
heap-manipulating programs.

4.1 Assertions

4.1.1 Models

The typical domain of application of separation logic is the proof of heap-manipulating
programs [Rey02, O’H07, GBC+07, Vaf07], and as such the models of its assertions are
often taken to be a stack and a heap. Let us consider the following set of states State, and
recall the definition of Stack and Heap from Chapter 2:1

State ≜ Stack ×Heap Stack ≜ Var ⇀fin Val Heap ≜ Loc⇀fin Val

The composition of two states σ1 = (s1, h1) and σ2 = (s2, h2) is defined only when the
domains of the two stacks and the domains of the two heaps are disjoint. When this is the
case, we write σ1 ♯σ2 and the composition σ1 ● σ2 is defined as

σ1 ● σ2 ≜ (s1 ⊎ s2, h1 ⊎ h2)

where the disjoint union of two partial functions f and g with the same codomain S is

f ⊎ g ∶
dom(f) ⊎ dom(g) ⇀ S

x ↦
⎧⎪⎪⎨⎪⎪⎩

f(x) if x ∈ dom(f)
g(x) if x ∈ dom(g)

1In many models of separation logic, stacks are total functions assigning values to variables, and only the
heap has a built-in notion of ownership by being a partial function from locations to values [Rey02]. This
gives rise to rather unpleasant side-conditions in the proof rules, and there is a tendency to treat variables
as resources more systematically, that is to define the stack as a partial map as well [BCY06]. We follow
the latter approach.

65

4.1. Assertions

E ::= logical expressions
X logical variable
∣ x program variable
∣ v value
∣ E +E ∣ E −E ∣ ⋯ arithmetic operations

φ ::= formulas
E = E boolean expression
∣ emps empty stack
∣ emph empty heap
∣ own(x) ownership of a single variable
∣ E ↦ E singleton heap
∣ φ ∗ φ separating conjunction
∣ φ −−∗ φ magicwand
∣ φ ∧ φ classical conjunction
∣ ¬φ classical negation
∣ ∀X.φ first-order quantification

Figure 4.1: Syntax of CSL assertions (X ∈ LVar, x ∈ Var, v ∈ Val).

4.1.2 Syntax

The assertions of separation logic, grouped in Figure 4.1, describe what is considered to
be owned in a given state (that is the domains of the stack and heap of the state), as well
as the values of program variables and the contents of memory cells. Logical expressions
are identical to program expressions (we will use E to denote both), except for the fact that
they may use logical variables as atoms in addition to program variables and values. The
set of logical variables is denoted by LVar, and its elements by X , Y , …

4.1.3 Semantics

The semantics of assertions is given by a satisfaction relation (or forcing relation) between
a state σ, a map i ∶ LVar → Val that assigns values to logical variables, and a formula φ of
separation logic. The forcing relation is presented in Figure 4.2. Logical expressions are
evaluated on both the program stack s and the logical “stack” i:

⟦v⟧s,i ≜ v ⟦x⟧s,i ≜ s(x) ⟦X⟧s,i ≜ i(X) ⟦E1 +E2⟧s,i ≜ ⟦E1⟧s,i + ⟦E2⟧s,i

⟦E1 −E2⟧s,i ≜ ⟦E1⟧s,i − ⟦E2⟧s,i . . .

Let us go through the table of Figure 4.2. The comparison of two expressions E1 =
E2 is true if they evaluate to the same value on s and i. It is false if they evaluate to
different values or if E1 or E2 mentions variables not present in s. The assertions emps

66

Chapter 4. Concurrent Separation Logics

(s, h), i ⊧ E1 = E2 iff var(E1,E2) ∈ dom(s) & ⟦E1⟧s,i = ⟦E2⟧s,i
(s, h), i ⊧ emps iff dom(s) = ∅
(s, h), i ⊧ emph iff dom(h) = ∅
(s, h), i ⊧ own(x) iff dom(s) = {x}
(s, h), i ⊧ E1 ↦ E2 iff var(E1,E2) ∈ dom(s)

& dom(h) = {⟦E1⟧s,i} & h(⟦E1⟧s,i) = (⟦E2⟧s,i)
σ, i ⊧ φ1 ∗ φ2 iff ∃σ1, σ2. σ = σ1 ● σ2 & σ1, i ⊧ φ1 & σ2, i ⊧ φ2
σ, i ⊧ φ1 −−∗ φ2 iff ∀σ′. if σ ♯σ′ & σ′, i ⊧ φ1 then σ ● σ′, i ⊧ φ2
σ, i ⊧ φ1 ∧ φ2 iff σ, i ⊧ φ1 & σ, i ⊧ φ2
σ, i ⊧ ¬φ iff σ, i ⊭ φ
σ, i ⊧ ∀X.φ iff ∀v ∈ Val. σ, [i ∣X ∶ v] ⊧ φ

Figure 4.2: Semantics of concurrent separation logic’s assertions.

and emph describe respectively the empty stack and the empty heap. The singleton stack
is described by own(x) (where the value of x can be specified separately if need be, for
instance own(x)∧ x = 42 is satisfied only by the stack [x ∶ 42]), and the singleton heap by
E1 ↦ E2 (contrarily to the case of the stack, this suffices to fully specify a singleton heap).

A crucial feature of separation logic is the ability to split a state into two disjoint parts:
σ, i ⊧ φ1 ∗ φ2 is true if there is a splitting σ1 ● σ2 of σ such that each substate satisfies a
subformula. As we will see in the proof rules, this allows one to easily eliminate the issues
that normally arise due to potential aliasing of memory locations. The magicwand operator
−−∗ is the adjunct of ∗. Conjunction, negation and universal quantification are standard.

4.1.4 Derived formulas

We can derive all the usual first-order connectives from the language of Figure 4.1 and do
so in Figure 4.3. Most of the formulas of Figure 4.3 should be self-explanatory. Let us
detail the last two. The formula E1 ↪ E2 is true in a state where E1 can be evaluated to
an allocated location of the heap and attached to the value E2. To negatively compare two
expressions, some care is needed: one cannot simply define E1 ≠ E2 as ¬(E1 = E2), else
it would also be true of states that do not hold enough resources to evaluateE1 andE2. This
is why E1 = E1 and E2 = E2 are added to the definition. Although these formulas may
seem tautological at first glance, they are not: they only hold ifE1 andE2 can be evaluated
on the current stack. With our definition, E1 ≠ E2 holds if both expressions evaluate to
different values on the current stack and with the current values of logical variables.

We use “−” as a wildcard; for instance, E ↦ − is read as ∃X.E ↦ X . To lighten
formulas, and following the variable as resources tradition [BCY06], we write x1, . . . , xn⊩
φ for (own(x1) ∗⋯ ∗ own(xn)) ∧ φ. Finally, the set var(φ) of the program variables of
a formula φ is defined as usual by structural induction on the formula. Quantifications
bind only logical variables, and there are no binders for program variables in the syntax of
assertions. We sometimes write σ ⊧ φ to mean that σ, i ⊧ φ for all i.

67

4.1. Assertions

true ≜ ∀X.X =X false ≜ ¬true φ1 ∨ φ2 ≜ ¬(¬φ1 ∧ ¬φ2)

φ1 ⇒ φ2 ≜ (¬φ1)∨φ2 φ1⇔ φ2 ≜ (φ1 ⇒ φ2)∧ (φ2 ⇒ φ1) ∃X.φ ≜ ¬∀X.¬φ

emp ≜ emps ∧ emph E1 ↪ E2 ≜ E1 ↦ E2 ∗ true

E1 ≠ E2 ≜ E1 = E1 ∧E2 = E2 ∧ ¬E1 = E2

Figure 4.3: Shorthand formulas.

Examples Let us give a few examples of formulas and what they denote.

Formula Denotation
x↦ 32 ∗ y↦ 52 two-cell heap
x↦ 32 ∧ y↦ 52 unsatisfiable: the heap is made of one cell with

conflicting values
x↦ − ∧ y↦ − one-cell heap, x = y
x = 32 ∗ x = 32 unsatisfiable: x cannot be present in the stacks on both

sides of ∗

4.1.5 Inductive predicates

Finally, we need a way of describing inductive structures in the heap, for instance linked lists
or binary trees. Following the tradition set by most of separation logic literature, we will not
give a formal semantics to such predicates, only informal inductive definitions. Defining
them more formally is of course possible, for instance using graph transformations [Dod09].
In this thesis, we will use the following singly-linked list segment and binary tree predicates:

lseg(E,F) ≜ (E = F ∧ emph) ∨ (E ≠ F ∧ ∃X.E ↦X ∗ lseg(X,F))
tree(E) ≜ (E = 0 ∧ emph) ∨ (∃X,Y.E ↦ l ∶X,r ∶ Y ∗ tree(X) ∗ tree(Y))

When F = 0, the list segment lseg(E,F) is “terminated”: the list can be unfolded until
there is no further successor. In this case, we may simply write list(E). Note that the
separating conjunction between each node guarantees that the list segment is acyclic.

To define binary trees, we need a record model on the heap (because a parent needs one
pointer to each of its children), which can be achieved with a slight extension of our model
as explained in Chapter 2 (page 32). As for linked lists, the separating conjunctions in the
definition ensure that all structures described by the formula are actual trees and not mere
graphs or directed acyclic graphs.

Other, more complicated shapes, like doubly-linked lists, or lists of lists, or red-black
trees of lists of trees, can be described using the same kind of definitions [Dod09]. There has
been some work in the past on composite data structures [BCC+07] and arrays [CDOY06] as
well. We can also define predicates that describe the data along with the shape of a dynamic

68

Chapter 4. Concurrent Separation Logics

structure [BBL09, Rey02], for instance to prove total correctness of a sorting program.
Finding more elegant and systematic ways to define inductive predicates, with or without
data, is challenging, and a concern orthogonal to this thesis and more akin to the domain of
shape analysis.

4.2 Proof system

4.2.1 An extension of Floyd-Hoare logic

In addition to the assertion language, separation logic is an extension of Floyd-Hoare logic
(or simply Hoare logic), a logic used to specify and prove programs [Hoa69, Flo67]. The
term “separation logic” usually refers both to the assertion language and to the proof sys-
tem that uses it. Floyd-Hoare logic statements are called Hoare triples, and have the form
{φ} p {ψ}, where φ and ψ are formulas (in our case, separation logic formulas), and p
a program. A Hoare triple {φ} p {ψ} has the following informal semantic reading in the
partial correctness setting2:

For any state σ satisfying φ, if p, σ⇒∗ skip, σ′ then σ′ satisfies ψ.

These triples are proved formally by constructing a derivation tree from a set of rules.
There is typically one such rule per programming construct, and logical rules to rewrite the
formulas of a triple.

Separation logic is tuned towards a fault-avoiding interpretation of triples. The goal is to
obtain the following soundness statement:

If {φ} p {ψ} is provable then, for any stateσ satisfying the formulaφ, p, σ /⇒∗

error and if p, σ⇒∗ skip, σ′ then σ′ satisfies ψ.

4.2.2 Small axioms

One of the main features of separation logic is the soundness of the frame rule:

F
{φ} p {φ′}

{φ ∗ ψ} p {φ′ ∗ ψ}

This rule states that, whenever the execution of a program from a certain heap does not
produce memory faults, it will not produce memory faults from a bigger heap either (a
property called safety monotonicity), and the extra piece of heap will remain untouched
by the program throughout its execution (we say that p is local). In traditional models of
separation logic where stacks are total functions (whereas ours are partial), the soundness
of the frame rule requires the following side-condition to be added:

freevar(ψ) ∩modifs(p) = ∅ .
2In the full correctness setting, we would also require that p does not diverge on σ. The focus of this thesis is

on partial, fault-avoiding correctness.

69

4.2. Proof system

Remark 4.1 Of course, the “classical” frame rule using ∧ would be unsound:

A--
{φ} p {φ′}

{φ ∧ ψ} p {φ′ ∧ ψ}
freevar(p) ∩ freevar(ψ) = ∅

This is due to potential aliasing. If we augmented Floyd-Hoare logic with this erroneous
frame rule, we could derive the following false specification of the mutation of a memory
cell:

{x↦ 32} [x] = 52 {x↦ 52}
{x↦ 32 ∧ y↦ 32} [x] = 52 {x↦ 52 ∧ y↦ 32}

With the frame rule, one can restrict the specification of programs to only be about the
cells they actually access (their footprint [RG08]). This also means that we can give the
axioms for atomic commands in a very minimalistic way. Thus, the following triple, which
states precisely and unambiguously the portion of state that is necessary for the command
to successfully fire, can be used as a so-called small axiom for the mutate command:

M

{var(E1,E2)⊩E1 ↦ −} [E1] = E2 {var(E1,E2)⊩E1 ↦ E2}

4.2.3 Proof rules

The proof rules of concurrent separation logic, adapted to our setting with variables as
resources but without permissions and to the programming language H, are split into
the axioms for atomic commands of Figure 4.4, the rules for programming constructs of
Figure 4.5 and the logical rules of Figure 4.6.

Let us describe each rule.

S The program has already reached its final state. Using this axiom and the frame rule,
one can derive {φ} skip {φ} for any φ.

A If the testB is true, the program terminates. The stack must contain the variables
of B.

A If the expressionE can be read and the variable x can be written, the value of x is
updated to be the same as E.

L and M Similar, except thatE (resp.E1) must point to an allocated location.

N and D Change an empty heap into a single cell and vice-versa.

S This is the classical Floyd-Hoare rule for composing programs sequentially:
the post-condition of a program is taken as a precondition for its continuation.

70

Chapter 4. Concurrent Separation Logics

S

{emp} skip {emp}

A

{var(B)⊩ emph} assume(B) {var(B)⊩B ∧ emph}

A

{x, var(E)⊩E =X ∧ emph} x = E {x, var(E)⊩ x =X ∧ emph}

L

{x, var(E)⊩E = Y ∧ Y ↦X} x = [E] {x, var(E)⊩ Y ↦X ∧ x =X}

M

{var(E1,E2)⊩E1 ↦ − ∧E2 =X} [E1] = E2 {var(E1,E2)⊩E1 ↦X}

N

{x⊩ emph} x = new() {x⊩ x↦ −}

D

{var(E)⊩E ↦ −} dispose(E) {var(E)⊩ emph}

Figure 4.4: Proof rules for atomic commands.

S
{φ} p {φ′} {φ′} p′ {ψ}

{φ} p;p′ {ψ}

P
{φ} p {ψ} {φ′} p′ {ψ′}
{φ ∗ φ′} p ∥ p′ {ψ ∗ ψ′}

C
{φ} p {ψ} {φ} p′ {ψ}

{φ} p + p′ {ψ}

S
{φ} p {φ}
{φ} p∗ {φ}

L
{own(z) ∗ φ} p[x←z] {own(z) ∗ ψ}

{φ} local x in p {ψ}
z ∉ freevar(φ, p,ψ)

Figure 4.5: Proof rules for programming constructs.

71

4.2. Proof system

F
{φ} p {φ′}

{φ ∗ ψ} p {φ′ ∗ ψ}

W
φ′ ⇒ φ {φ} p {ψ} ψ⇒ ψ′

{φ′} p {ψ′}

C
{φ1} p {ψ1} {φ2} p {ψ2}
{φ1 ∧ φ2} p {ψ1 ∧ ψ2}

D
{φ1} p {ψ1} {φ2} p {ψ2}
{φ1 ∨ φ2} p {ψ1 ∨ ψ2}

E
{φ} p {ψ}

{∃X.φ} p {∃X.ψ}

R
{φ} p {ψ}

{φ[x↔ y]} p[x↔ y] {ψ[x↔ y]}

Figure 4.6: Logical proof rules.

P The rule for parallel composition accounts for disjoint concurrency: one has
to be able to partition the state into two disjoint substates that form valid respective
preconditions for each of the two threads. The resulting post-conditions are glued to-
gether to form the post-condition of the parallel composition. Had we not considered
stacks as partial functions, there would be numerous side-conditions attached to this
rule [Bro07, BCY06].

C and S Standard.

L The rule allocates a new variable z which is used to prove p. The variable must be
tracked throughout the proof of p and still be present at the end, when it is disposed.

F See earlier discussion.

W This is a standard Floyd-Hoare rule, whose soundness follows directly from
the definition of what a valid Hoare triple is.

C, D, E and R Standard.

We give below the soundness of separation logic adapted to our setting. We will not prove
it here, as it is not the focus of this thesis.

For any program p ∈ H, if the triple {φ} p {ψ} is provable, then for any state
σ and any interpretation i, if σ, i ⊧ φ then p, σ /⇒∗ error and if p, σ ⇒∗
skip, σ′ then σ′, i ⊧ ψ.

4.2.4 Conditional critical regions

As discussed in Chapter 2, there exist many programming language tools to allow the dif-
ferent components of a program to synchronise. Historically, the first mechanism that was

72

Chapter 4. Concurrent Separation Logics

R
Γ, r ∶ γr ⊢ {φ} p {ψ}

Γ ⊢ {φ ∗ γr} resource r in p {ψ ∗ γr}

CCR
Γ ⊢ {(φ ∗ γr) ∧B} p {φ′ ∗ γr}

Γ, r ∶ γr ⊢ {φ} with r when B p {φ′}

Figure 4.7: Proof rules for conditional critical regions.

included in separation logic was conditional critical regions [O’H04] (CCR for short, see
page 13). In this case, proofs keep track of the resources available to a program via a con-
text. A context Γ is a list of pairs r ∶ γr that associates resource identifiers to separation
logic formulas: their invariants. Resource invariants must hold when the resource is cre-
ated, can be assumed every time a resource is successfully acquired, and have to be asserted
when the resource is released. This behaviour is enforced by the rules of Figure 4.7 that are
added to separation logic’s proof system. The sequents are extended to support contexts,
and are now of the form Γ ⊢ {φ} p {ψ}. Previous rules can be adapted to this new setting
by adding Γ uniformly on the left-hand side of each turnstile. The resulting logic is called
concurrent separation logic (CSL). Though it is but one concurrent version of separation
logic, it has the primacy of being the first one.

Note that the CCR rule prevents the same resource from being acquired twice since it
removes the resource from the proof environment when entering the critical section. This
catches some of the possible deadlocks of programs.

Precision For the proof system to be sound, the resource invariants must be precise for-
mulas. Precise formulas unambiguously identify a piece of state.

Definition 4.1 (Precise formulas) A formula φ is precise if for all instantiations i of log-
ical variables and all state σ, there is at most one substate σ′ ⪯ σ such that σ′, i ⊧ φ.

In particular, true is not precise, and neither is (x ⊩ emph) ∨ (x ⊩ x ↦ −). However,
emp, x⊩ emph and x⊩ x↦ − are all precise. Without this requirement, soundness is lost,
as first pointed out by Reynolds. Let us show here why, by rephrasing O’Hearn [O’H07,
Section 11]. Let one ≜ emps ∧ 10 ↦ − and suppose that the resource r has been assigned
true as invariant, which is imprecise. Consider the following proof:

{emp} skip {emp}
S

{emp ∗ true} skip {emp ∗ true}
F

{(emp ∨ one) ∗ true} skip {emp ∗ true}
W

{emp ∨ one} with r { skip } {emp}
CCR

73

4.2. Proof system

From this derivation, one can prove the following two triples by either applying the proof
above right away or by framing one first:

{emp ∨ one} with r { skip } {emp}
{one} with r { skip } {emp}

W

{emp ∨ one} with r { skip } {emp}
{emp} with r { skip } {emp}

W

{emp ∗ one} with r { skip } {emp ∗ one}
F

{one} with r { skip } {one}
W

The conclusions of these two derivations are incompatible. The first says that ownership of
the single cell is swallowed up by the resource, while the second says that it is kept by the
program. Applying the conjunction rule with these two conclusions gives us as conclusion
{one ∧ one} with r { skip } {one ∧ emp}, and finally, using the rule of weakening:

{one} with r { skip } {false}

This suggests that the above program loops, which is not the case. For a more in-depth ac-
count of this counter example and the possible remedies, see the paper by O’Hearn [O’H07,
Section 11]. To summarise its conclusions, one can abandon the conjunction rule to restore
soundness but, more often than not, resource invariants are required to be precise in con-
current separation logic and its variants and extensions [O’H07, Bro07, GBC+07, Vaf07].
We adopt the latter restriction.

Soundness Brookes has proved [Bro07] that the soundness result stated earlier still holds
for concurrent separation logic with conditional critical regions. A key intuition to the proof
is again the separation property, exposed page 18. Let us show how it affects the soundness
statement. Given a resource context Γ = r1 ∶ γ1, . . . , rn ∶ γn and following Brookes’
notations, we write inv(Γ) for the spatial conjunction of the invariants of Γ (we write ⊛
for the iterated version of ∗):

inv(Γ) ≜
n

⊛
i=1
γi

Adapted to our setting, Brookes’ statement of soundness becomes

If Γ ⊢ {φ} p {ψ} is provable then for any state σ satisfying the formula φ ∗
inv(Γ), p, σ /⇒∗ error and if p, σ⇒∗ skip, σ′ then σ′ satisfiesψ∗inv(Γ).

Example We can now prove that the following example is race-free. The global variable
x is shared between two threads that both increment it within a critical region (this example
was presented on page 14).

74

Chapter 4. Concurrent Separation Logics

∅ ⊢ {own(x) ∧ emph}
resource r;
r ∶ own(x) ⊢ {emp} with r { x++; } ∥ with r { x++; } {emp}
{own(x) ∧ emph}

Each individual thread can be proved as follows:
r ∶ own(x) ⊢ {emp}

with r {
∅ ⊢ {own(x) ∧ emph} x++; {own(x) ∧ emph}

}
{emp}

Their parallel composition is proved using the logical equivalence emp⇔ emp∗ emp.3

3Note that we did not prove that the final result of executing the whole program is to increment x by 2. One
can use auxiliary variables (à la Owicki and Gries [OG76]) to achieve this.

75

C

Proving Copyless Message Passing

In this chapter, we show how to apply the local reasoning ideas of the previous chapter
to the copyless message-passing language with endpoints in the heap HMP (presented in
Chapter 2). The resulting logic marries contracts (studied in Chapter 3) and separation logic
within a proof system that discharges parts of the verification of a program to the verification
of its contracts. The contracts are annotations in the source code and are used to abstract
the contents of the communication buffers in the models of the logic, as well as to be able
to assert further safety properties about communications.

Our analysis of a program p follows these steps:

1. Decorate p with contracts at each open instruction.

2. Prove a specification {φ} p {ψ}, which ensures that p does not fault on memory
accesses and obeys its contracts.

3. Prove that the contracts are fault-free and leak-free, in which case p does not fault on
message receptions and does not close channels with undelivered messages.

5.1 Proof system

5.1.1 Session states

Let us introduce session states, which will be the models of our logic. The memory model
of separation logic is augmented with an endpoint heap. Instead of attaching words of
message tags and values to endpoints like in Chapter 2, we abstract away from the contents
of the buffers and attach a contract and a control state to each endpoint. More precisely, a
channel is associated to a contract, and each of its endpoints is associated to one of the two
roles 1 or 2 in the dialogue system corresponding to the contract, and a current control state.
This gives rise to concise predicates to describe the states of endpoints and, as we will see
in the next chapter, allows one to prove that programs respect their protocols directly into

77

5.1. Proof system

the logic. The logical states, or session states, are elements σ̇ = (s, h, k̇) of ˙State:

˙State ≜ Stack ×Heap × Session Stack ≜ Var ⇀fin Val Heap ≜ Cell⇀fin Val

Session ≜ Endpoint⇀fin Endpoint × Cttdet × Role × Control

In the definition above,Control denotes the set of control states,Role ≜ {1,2} andCttdet

denotes the set of deterministic contracts. Forbidding non-deterministic contracts simplifies
the presentation: non-deterministic contracts would require the logic to keep track of a set
of possible control states for each endpoint instead of a single control state. Although we
do not give here a full formal account of non-deterministic contracts, we will show how to
extend our logic and proof system to support them in Section 5.3.1. These extensions are
implemented in our tool Heap-Hop, which is not restricted to deterministic contracts.

As for closed states, we define the peer mate(k̇, ε) of an endpoint ε in the domain of a
session endpoint heap k̇: if σ̇ = (s, h, k̇), ε ∈ dom(k̇) and k̇(ε) = (ε′,−,−,−), we write
mate(k̇, ε) or mate(σ̇, ε) for ε′.

We only consider well-formed states, namely states (s, h, k̇) which satisfy:

∀ε ∈ dom(k̇).mate(k̇, ε) ≠ ε (SIrreflexive)

∀ε ∈ dom(k̇).mate(k̇, ε) ∈ dom(k̇)⇒
mate(k̇,mate(k̇, ε)) = ε (SInvolutive)

∀ε1, ε2 ∈ dom(k̇).mate(k̇, ε1) = mate(k̇, ε2)⇒ ε1 = ε2 (SInjective)

∀ε, ε′ ∈ dom(k̇). { k̇(ε) = (ε
′,C, r, q)

k̇(ε′) = (ε,C′, r′, q′) ⇒ {
C′ = C
r′ = 3 − r (SDual)

∀ε ∈ dom(k̇). k̇(ε) = (ε′, (Σ,Q, q0, F, T), r, q)⇒ q ∈ Q (SControl)

The first two rules are the session states counterparts of the (Irreflexive) and (Involutive)
rules for closed states seen page 34. The third one, (SInjective), follows from (Channel) and
(Involutive) in the closed model, but since we do not require the equivalent of (Channel) for
session states we add it explicitly. The fourth one ensures that dual endpoints are assigned
dual roles of the same contract, and the last one ensures that the control state an endpoint is
said to be at is one of the control states of its contract.

The set ˙State is equipped with a composition law ● defined as the disjoint union ⊎ of
each of the components of the states, provided that the resulting state is well-formed:

(s, h, k̇) ● (s′, h′, k̇′) ≜ (s ⊎ s′, h ⊎ h′, k̇ ⊎ k̇′) .

When σ̇ ● σ̇′ is defined, we write σ̇ ♯ σ̇′. Given two states σ̇ and σ̇′, σ̇ ⪯ σ̇′ and σ̇′− σ̇ are
defined as usual (remark that if there exists σ̇′′ such that σ̇●σ̇′′ = σ̇′ then σ̇′′ is unique). The
empty state (∅,∅,∅) is denoted by u̇. Session states form a partial commutative monoid.
To prove this, we will need the following lemma.

Lemma 5.1 If σ̇ ⪯ σ̇′ and σ̇′ is well-formed then so is σ̇.

78

Chapter 5. Proving Copyless Message Passing

Proof Immediate by reductio ad absurdum and a case analysis on the well-formedness
condition that σ̇ fails to satisfy. ◻

Lemma 5.2 (˙State, ●, u̇) is a partial, commutative monoid with unit u̇.
Proof We have to show that ˙State is stable by ● and that ● is associative, commutative,
and admits u̇ as unit. The only delicate point is the proof of associativity.

Let us first remark that if we drop the well-formedness constraint, then associativity is
immediate. This shows in particular that if σ̇1●(σ̇2●σ̇3) and (σ̇1●σ̇2)●σ̇3 are both defined
then they are equal. What is left to prove is that if σ̇2 ♯ σ̇3 and σ̇1 ♯(σ̇2 ● σ̇3) then σ̇1 ♯ σ̇2
and (σ̇1 ● σ̇2) ♯ σ̇3; this is a consequence of the previous lemma. ◻

5.1.2 Assertions

Syntax We extend the assertion language of separation logic of Figure 4.1 with the fol-
lowing predicate to describe the endpoint heap.

φ ::= formulas
⋯ separation logic formulas (see Figure 4.1)
∣ E1 ↦ (E2,C, r, q) singleton endpoint heap

Semantics The predicate above describes an endpoint heap where only the address cor-
responding toE1 is allocated, and points to its peerE2, follows contract Cwith role r and is
currently in the control state q of C. It moreover asserts the emptiness of the cell heap. The
latter consequence serves no theoretical purpose, as we could leave the cell heap unspeci-
fied while describing the endpoint heap and vice-versa. However, both heaps are really just
one heap cut in two for simplicity, which is more faithfully reflected by this design choice.
Moreover, we find that it gives rise to more concise formulas in practise. Formally,

(s, h, k̇), i ⊧ E1 ↦ (E2,C, r, q) iff var(E1,E2) ⊆ dom(s) & dom(h) = ∅
& dom(k̇) = {⟦E1⟧s,i}
& k̇(⟦E1⟧s,i) = (⟦E2⟧s,i,C, r, q)

The semantics of the regular points-to predicate is changed to stress that the allocated
location is not an endpoint, and the predicate emph now asserts the emptiness of both the
cell and the endpoint heaps:

(s, h, k̇), i ⊧ E1 ↦ E2 iff var(E1,E2) ⊆ dom(s) & dom(k̇) = ∅
& dom(h) = {⟦E1⟧s,i} & h(⟦E1⟧s,i) = ⟦E2⟧s,i

(s, h, k̇), i ⊧ emph iff dom(h) = dom(k̇) = ∅

In particular, the formula X ↦ Y ∧X ↦ (Y,C, r, q) is unsatisfiable: the same location
cannot be both a regular cell and an endpoint. The shorthand emp ≜ emps ∧ emph now
asserts the emptiness of the stack, the cell heap, and the endpoint heap.

The semantics of all the other predicates and operators is straightforwardly adapted from
Figure 4.1; their former formulation needs not be altered, but state composition and com-
patibility is now understood in terms of well-formed ideal states composition.

79

5.1. Proof system

5.1.3 Rules for communication

Sending and receiving actions are a means of synchronisation between processes: even
though sending is asynchronous, there is still a temporal constraint between the sending
and the receiving of the same message. Thus, messages can be used to transfer ownership
of pieces of state between the sender and the receiver of a message, similarly to how the
effects of other forms of synchronisations are mirrored in separation logic.

From this moment on, we consider that all programs are annotated by deterministic con-
tracts at each open instruction in the source code. Thus, each (e,f) = open()will hence-
forth be of the form (e,f) = open(C). Intuitively, each channel that is opened by a pro-
gram must declare the protocol that will take place on it. This places an implicit restriction
that the contract has to be the same for each channel created at the same program point.
This restriction also applies to S♯ and S J, where programs are annotated in a
similar fashion.

Footprints Similarly to other synchronisation mechanisms as locks and resources, a mes-
sage corresponds to a transfer of ownership. Thus, we attach to each message a formula of
our separation logic, called its footprint1. Different messages can be associated with differ-
ent footprints; we attach the same footprint to messages of the same tag. This is a natural
choice, as the same tag is usually used for messages with the same meaning.

A footprint can mention four parameters, in the form of special free logical variables src,
dst, rl and val.2 When a message is sent, the proof system will check that the footprint holds
for a particular instantiation of these variables: src is instantiated by the source endpoint,
dst by its peer (the destination endpoint), rl by the role of the sending endpoint and val by
the value of the message. When it is received, the variable that the value of the message
is assigned to becomes equal to the val parameter, and dst and src are replaced according
to the location of the receiving endpoint and its peer respectively. This form of reasoning
is justified by the fact that the values denoted by these parameters are assured to remain
constant between the time when a message is sent and the time when it is received.

For example, the footprint for a message containing the location of an allocated cell (like
in the example of Figure 1.6 page 22) can be γcell ≜ val↦ −. Similarly, sending an endpoint
over itself (like in the example of Figure 1.8 page 23) can be expressed by the footprint
γfin ≜ val ↦ (−,−,−,−) ∧ val = src or γfin ≜ val ↦ (dst,−,−,−). We can specify that
only the first endpoints of channels following the contract C will be attached to a message
a, and that they will only be sent from an endpoint from the same role with the footprint
γa ≜ val↦ (−,C,1,−) ∧ rl = 1.

A footprint context is written Γ and is of the form a1 ∶ γ1, . . . , an ∶ γn. If all the formulas
γi are precise (see Definition 4.1), the context is well-formed. As for locks and resources,

1These formulas were called invariants in our original papers to emphasise their similarities to locks and
CCRs. We felt the need to change the terminology because they do not represent the state of a shared
resource that has to be maintained, but rather the ownership of a piece of state that is logically being trans-
ferred.

2Footprint parameters play a similar role as the lock parameters of the storable locks of Gotsman et
al. [GBC+07].

80

Chapter 5. Proving Copyless Message Passing

imprecise footprints can lead to unsoundness in the proof system. We discuss this issue
later in this chapter, in Section 5.3.2.

Since the set of message identifiers is fixed from the beginning, contrarily to resources
identifiers that can be declared within a program, the context is actually fixed throughout
the proof. We reflect this in our notations by making it a subscript of the turnstile: a triple
provable under a context Γ is written ⊢Γ {φ} p {ψ}.

Finally, when C = (Σ,Q, q0, F, T), we write succ(C, r, q, τ) for the state q′ such that
q

τÐ→ q′ is a valid transition of the contract C in the role r, that is either r = 1 and (q, τ, q′) ∈
T or r = 2 and (q, τ, q′) ∈ T̄ . There is at most one such q′ since all the contracts we
consider are deterministic.

Proof system Let us present our proof system for the HMP language. The rules of
separation logic presented in the previous chapter (Figures 4.4, 4.5 and 4.6) are modified
by uniformly adding ⊢Γ to the left of each Hoare triple. The rules for channel creation and
destruction and for communications are given in Figure 5.1. We write γ(E1,E2,E3,E4)
for γ[src←E1][dst←E2][rl←E3][val←E4].

Unfortunately, the variables as resource model without permissions forces us to perform
some squirming around to read the same variable in two different parts of a formula sepa-
rated by a separating conjunction: each time this situation arises, we have to first store the
value of the incriminated variable into a logical variable and use the latter to refer to it. This
is for the greater good, as it will lighten the notations of our upcoming proof of soundness.
For instance, the formula x↦ y∗y↦ x is inconsistent (a variable may not appear in both the
domains of disjoint stacks), and one should rather write x =X∧y = Y ∧(X ↦ Y ∗Y ↦X)
to say that x and y point to each other.

Let us review the five new rules, and how they ensure that both ownership and the con-
tracts are respected.

O The rule is similar to N: starting from an empty heap, it allocates two endpoint
locations. They are initialised according to the contract that decorates the open com-
mand, and to point to each other.

C The rule verifies that the two expressions given as arguments point to two endpoints
that form a channel (they point to each other) and that are both in the same final
state of the contract, hence that the whole channel is in a final state according to the
definition of dialogue systems associated to contracts. If it is the case, the channel is
deallocated, and the heap is considered empty.

S Let us consider a simplified version of this rule first, in the case where the footprint
does not mention the sending endpoint:

S
succ(C, r, q, !a) = q′

{E1 =X ∧E2 = Y ∧X ↦ (X ′,C, r, q) ∗ γa(X,X ′, r, Y)}
⊢Γ send(a,E1,E2)

{E1 ↦ (X ′,C, r, q′)}

81

5.1. Proof system

O
q0 = init(C)

⊢Γ
{e, f⊩ emph}
(e,f) = open(C)
{e, f⊩ e =X ∧ f = Y ∧ (X ↦ (Y,C,1, q0) ∗ Y ↦ (X,C,2, q0))}

C
qf ∈ finals(C)

{var(E1,E2)⊩
E1 =X1 ∧E2 =X2

∧ (X1 ↦ (X2,C,1, qf) ∗X2 ↦ (X1,C,2, qf))
}

⊢Γ close(E1,E2)
{var(E1,E2)⊩ emph}

S
succ(C, r, q, !a) = q′

{ E1 =X ∧E2 = Y
∧ (X ↦ (X ′,C, r, q) ∗ (X ↦ (X ′,C, r, q′) −−∗ γa(X,X ′, r, Y) ∗ φ))

}

⊢Γ send(a,E1,E2)
{φ}

CD

φ⇒
n

⋀
i=1
(Ei = Y ∧ xi = xi) ∗ true

{ai ∣ i ∈ {1, . . . , n}} = {a ∣ ∃q′. succ(C, r, q, ?a) = q′}

∀i.∃q′. { succ(C, r, q, ?ai) = q′
& ⊢Γ {xi = Z ∧ (Y ↦ (Y ′,C, r, q′) ∗ φ ∗ γai(Y

′, Y,3 − r,Z))} pi {ψ}

⊢Γ {Y ↦ (Y ′,C, r, q) ∗ φ}
nü

i=1
xi = receive(ai,Ei): pi {ψ}

†Z ∉ freevar(φ)

†

EC
⊢Γ {φ} p {ψ} ⊢Γ {φ} p′ {ψ}

⊢Γ {φ} p ◻ p′ {ψ}

Figure 5.1: Proof rules for copyless message passing.

82

Chapter 5. Proving Copyless Message Passing

This is an instance of the S rule where φ = E1 ↦ (X ′,C, r, q′). In this version,
the precondition requires the sending endpoint and the message footprint to be present
in the current state, and the message to be authorised by the contract in the current
control state of the endpoint. The footprint of the message has been instantiated with
the correct parameters: X for the source endpoint src, X ′ for the destination end-
point dst, r for the role rl and Y for the value val. As expected, ownership of the
message’s footprint is lost after sending, and the control state of the endpoint is up-
dated according to the contract. Thus, a proved program cannot access the pieces of
state attached to a message after it has been sent; only the recipient of the message will
be able to further access it, once it has received the message. The following program
is in particular not provable with Γ = cell ∶ val↦ − and succ(C, r, q, !cell) = q′.
{x, y, e⊩ x↦ − ∗ e↦ (−,C, r, q)}
send(cell,e,x);
{x, y, e⊩ e↦ (−,C, r, q′)}
y = [x];

Swapping the two lines removes any possibility for a race and allows the proof to go
through:
{x, y, e⊩ x↦ − ∗ e↦ (−,C, r, q)}
y = [x];
{x, y, e⊩ x↦ y ∗ e↦ (−,C, r, q)}
send(cell,e,x);
{x, y, e⊩ e↦ (−,C, r, q′)}

If the endpoint itself is part of the message footprint, then its control state has to be
updated before we try and verify that γa(X,X ′, r, Y) is part of the state. Indeed,
the receive rule will simply add γa(X,X ′, r, Y) to the current state, hence it must
be up-to-date with regard to the endpoint’s control state at the moment it was sent.
Updating the control state of the sending endpoint is the purpose of the interplay of
∗ and −−∗ in the precondition. In this case, the following rule can be derived (taking
φ = emph):

S
succ(C, r, q, !a) = q′

{ E1 =X ∧E2 = Y
∧ (X ↦ (X ′,C, r, q) ∗ (X ↦ (X ′,C, r, q′) −−∗ γa(X,X ′, r, Y)))

}

⊢Γ send(a,E1,E2)
{emph}

The rule S of Figure 5.1 is a more general rule that accounts for both cases.

CD and EC These two rules govern external choice and recep-
tion. They have been made into two rules to simplify notations by treating separately
each endpoint of an external choice composition. This supposes that the components
of a guarded program are reordered for the needs of the proof, so as to group receives
that target the same endpoint together.

83

5.1. Proof system

In the case of receive, abiding by the contract is more intricate than in the case of
send, where the action merely has to be one of the available transitions of the contract.
Indeed, for a particular endpoint at control state q of a contract C, for instance with
role 1, each receive performed on this endpoint has to be one of the available receiving
actions going out from q but, conversely (and because the choice of which message
is in the queue is not in the hands of the receiving endpoint), all possible receive
actions should also be accounted for in the external choice composition. This is what
is required by the second premise of the rule:

{ai ∣ i ∈ {1, . . . , n}} = {a ∣ ∃q′. succ(C, r, q, ?a) = q′} .

The third and last premise of the rule requires each possible continuation to be prov-
able, with a precondition that differs from the precondition of the composition in
three aspects: the control state of the receiving endpoint is updated, the piece of state
attached to the message is tacked on the current state (using the spatial composition),
and x is given a new value Z that corresponds to what the formula describing the
footprint of the message states about the value of the message.

To give more intuitions on this rule, let us consider an example with a single branch.

We let C =
..q0.. q1. !cell

and Γ = cell ∶ val ↦ −. The following proof is
derivable:

{x, e⊩ e↦ (−,C,1, q0)}
x = receive(cell,e): {
{x, e⊩ x = Z ∧ (e↦ (−,C,1, q1) ∗Z ↦ −)}
{x, e⊩ e↦ (−,C,1, q1) ∗ x↦ −}
dispose(x)
{x, e⊩ e↦ (−,C,1, q1)}
}

{x, e⊩ e↦ (−,C,1, q1)}

Soundness Although we will not prove the soundness of our proof system before the
next chapter, let us give an intuition about what is proved by our logic. The originality of
our soundness result is that some of the properties that a successful proof of the program
entails depend on the properties of the protocols that the program follows, which can be
studied separately.

We do not give here the formal statement of soundness, as it is non-trivial to express. In
particular, it requires to make a connection between a closed state and a session state. In the
following argument, we suppose that there is such a connection that allows us to say that a
closed state satisfies a given formula of our logic.

Informally, if a triple ⊢Γ {φ} p {ψ} is provable and Γ is well-formed then for all state
σ and interpretation i, if there is a formula γ0 corresponding to the concatenation of the
footprints of the messages in transit in σ such that σ, i ⊧ φ ∗ γ0 then

1. p commits no ownership error (in particular, there is no race);

84

Chapter 5. Proving Copyless Message Passing

2. p follows its specified protocols;

3. if p terminates with the final state σ′, then there is γf corresponding to the concate-
nation of the footprints of the messages in transit in σ′ and there is ψ′ corresponding
to some leaked state such that σ′, i ⊧ ψ ∗ γf ∗ ψ′;

4. if all the contracts of p are fault-free then p commits no message error;

5. if all the contracts of p are leak-free and if additionally Γ is admissible (see Sec-
tion 5.3.4), then there is in fact no leak and ψ′ = emp.

Our formal soundness statement for closed programs is given by Theorem 6.2 page 119,
and leak freedom is discussed in Section 6.4.4.

5.2 Examples

Let us show how to prove a few typical examples. Following the notations of Heap-Hop, we
give the footprint formula associated to a message identifier in brackets next to its declara-
tion (for instance: message cell [emps ∧ val↦]). For clarity, we allow the declaration
of non-mutually recursive functions in the syntax, as they can simply be inlined at their call
sites to obtain a program that conforms to the formal syntax. A function declaration will
also mention its expected pre- and post-condition. The following code snippet indicates that
{φ} f {ψ} is provable:
f(x) [φ] {

// body of f
} [ψ]

We also indicate intermediary steps of the derivation informally in the code comments
(lines beginning with //). We use Heap-Hop’s notations for contracts.

Let us begin by proving some of the examples described in Chapter 1.

5.2.1 Cell and endpoint passing

Cell passing We give a proof of the cell passing example of Figure 1.6 in Figure 5.2. As
noted in Chapter 1, the message cell carries the ownership of the cell whose address is the
value of the message. This is reflected in the footprint emps ∧ val ↦ −. Notice that the
transfer of ownership is visible in the pre and post-conditions of put and of get.3

As discussed when this example was introduced (see page 22), one could imagine a vari-
ation of this example where put_cell retains ownership of the cell pointed to by x and
disposes it while the get_cell does nothing with the value it receives. This behaviour is
also compatible with our proof rules of course: by changing the footprint associated to cell
to emp, we reflect the fact that no ownership transfer happens and the proof goes through
for the new version. The proof of put_cell, for instance, would become:

3In the case of a single cell, and if we ignore what is happening inside the endpoint heap, send and receive
are similar to dispose and new.

85

5.2. Examples

message cell [emps ∧ val↦ −]

contract C {
initial state q { !cell -> q’; }
final state q’ {}

}

put_cell(e,x) [e, x⊩ e↦ (Y,C,1, q) ∗ x↦] {
send(cell,e,x);

} [e, x⊩ e↦ (Y,C,1, q′)]

get_cell(f) [f⊩ f↦ (X,C,2, q)] {
local y;

y = receive(cell,f);
// y, f⊩ f↦ (X,C,2, q′) ∗ y↦ −
dispose(y);

} [f⊩ f↦ (X,C,2, q′)]

main() [emp] {
local x,e,f;

x = new();
// x, e, f⊩ x↦ −
(e,f) = open(C);
// x, e, f⊩ x↦ − ∗ e =X ∗ f = Y ∗ (X ↦ (Y,C,1, q) ∗ Y ↦ (X,C,2, q))
put_cell(e,x) || get_cell(f);
// x, e, f⊩ e =X ∗ f = Y ∗ (X ↦ (Y,C,1, q′) ∗ Y ↦ (X,C,2, q′))
close(e,f);

} [emp]

Figure 5.2: Proof of the cell transfer.

{e, x⊩ e↦ (Y,C,1, q) ∗ x↦}
send(cell,e,x);
{e, x⊩ e↦ (Y,C,1, q′) ∗ x↦}
dispose(x);
{e, x⊩ e↦ (Y,C,1, q′)}

With the original footprint emps ∧ val ↦ −, this proof would not succeed as dispose(x)
requires that x points to an allocated memory cell in its precondition.

As far as the communication protocol is concerned, we could have used any other spec-
ification that allows to send and receive the message cell and lead to a final configuration,
for instance the following contract:

C′cell ≜ ..q..

!cell

Although the program obeys C′cell as well as Ccell, the former choice is less sensible than

86

Chapter 5. Proving Copyless Message Passing

message cell [emps ∧ val↦ −]
message fin [emps ∧ val↦ (−,C,1, q

′′) ∧ val = src]

contract C {
initial state q { !cell -> q’; }
state q’ { !fin -> q’’; }
final state q’’ {}

}

put_cell(e,x) [e, x⊩ e↦ (−,C,1, q) ∗ x↦] {
send(cell,e,x);
send(fin,e,e);

} [e, x⊩ emph]

get_cell(f) [f⊩ f↦ (−,C,2, q)] {
local y,ee;

y = receive(cell,f);
// y, ee, f⊩ f↦ (−,C,2, q′) ∗ y↦ −
dispose(y);
ee = receive(fin,f);
// y, ee, f⊩ f↦ (X,C,2, q′′) ∗X ↦ (−,C,1, q′′) ∧X = ee
close(ee,f);

} [f⊩ emph]

main() [emp] {
local x,e,f;

x = new();
// x, e, f⊩ x↦ −
(e,f) = open(C);
// x, e, f⊩ x↦ − ∗ e =X ∗ f = Y ∗X ↦ (Y,C,1, q) ∗ Y ↦ (X,C,2, q)
put_cell(e,x) || get_cell(f);
// x, e, f⊩ emph ∗ emph

} [emp]

Figure 5.3: Proof of the cell and endpoint transfer.

the latter, as C′cell provides less intuition about the communication protocol followed by the
program. Moreover, C′cell is not leak-free. As we have informally seen at the end of the
previous section, this means that we will not be able to prove that this program is leak-free
using our logic with C′cell as contract.

According to our informal soundness statement, the proof of Figure 5.2 shows that the
cell-passing program is race-free, fault-free and leak-free. Let us now show that the same
is true of the cell and endpoint passing program, first seen in Figure 1.8.

Cell and endpoint passing The proof sketch of the cell and endpoint passing program
is presented Figure 5.3. As it is very similar to the previous one, let us only discuss the

87

5.2. Examples

footprint of the fin message. This footprint uses the parameter src to specify that the end-
point in transit is the one from which the message was sent. This is a crucial element of
the proof: had we chosen γ′fin ≜ emps ∧ val ↦ (−,C,1, q′′) as a footprint, the proof of
put_cell would still go through (since γfin implies γ′fin) but the last two lines of the proof
of get_cell would give the following failed proof attempt:
// y, f⊩ f↦ (−,C,2, q′)
ee = receive(fin,f);
// y, f, ee⊩ f↦ (−,C,2, q′′) ∗ ee↦ (−,C,1, q′′)
close(ee,f);

The rule C cannot be applied because at this point (ee, f) is not guaranteed to form
a channel: γ′fin says nothing about the origin of the message, so it could point to another
endpoint with the same characteristics but from a different channel not related to f.

Alternatively, one could have given as footprint emps ∧ val ↦ (dst,C,1, q′′) to specify
that the transmitted endpoint is the other end of the channel and the proof would go through.
Indeed, thanks to the (LInjective) axiom,

val↦ (dst,C,1, q′′)⇔ (val↦ (−,C,1, q′′) ∧ val = src) .

Sending a list cell by cell The proof of the copyless cell-by-cell list sending program
sketched in Figure 5.4 uses the same message footprints but a protocol based on a slightly
different contract that accounts for the a priori unbounded number of cells that can be sent
over the channel. The proof is quite straightforward. We use brackets in while constructs
to specify their loops invariants.

A new kind of possible error that this program could have is to omit one of the branches
of the switch receive, for instance the branch corresponding to the final message fin. This
would cause the program to block (or fail depending on the semantics one gives to unspeci-
fied receptions) when put_list sends its endpoint at the last step, unable to receive the fin
message present in the buffer. The proof system would detect this problem because the con-
tract states that two messages may be received from state q (cell and fin) hence the program
should not attempt to receive only one of them.

5.2.2 Automatic teller machine

Figure 5.5 presents the proof of a simplistic automatic teller machine (ATM) that exhibits
more complex communication patterns. This example is taken from one of the first papers
on session types: “Language primitives and type discipline for structured communication-
based programming” by Honda et al. [THK94]. The functioning of the ATM is stripped
down to its interactions with users and the bank, hence the lack of code for checking the
PIN of the user for instance.

This program does not fit our model stricto sensu: communications between the ATM
and the bank do not happen over a shared memory but rather over a communication network.
However, we argue that verifying this program in the copyless setting still makes sense if we
look at it from an ownership point of view. Indeed, receiving a new endpoint is equivalent

88

Chapter 5. Proving Copyless Message Passing

message cell [emps ∧ val↦ −]
message fin [emps ∧ val↦ (−,C,1, q

′) ∧ val = src]

contract C {
initial state q { !cell -> q; !fin -> q’; }
final state q’ {}

}

put_cell(e,x) [e, x⊩ e↦ (−,C,1, q) ∗ x↦] {
local t;

while(x != 0) [e, x, t⊩ e↦ (−,C,1, q) ∗ list(x)] {
// e, x, t⊩ e↦ (−,C,1, q) ∗ x↦ T ∗ list(T)
t = x->tl;
// e, x, t⊩ e↦ (−,C,1, q) ∗ x↦ T ∗ list(T) ∗ t = T
send(cell,e,x);
// e, x, t⊩ e↦ (−,C,1, q) ∗ list(t)
x = t;
// e, x, t⊩ e↦ (−,C,1, q) ∗ list(x)

}
// e, x, t⊩ e↦ (−,C,1, q)
send(fin,e,e);

} [e, x⊩ emph]

get_cell(f) [f⊩ f↦ (X,C,2, q)] {
local y, ee;

ee = 0;
while(ee == 0) [f, y, ee⊩ (ee = 0 ∧ f↦ (−,C,2, q))

∨(ee =X ∧X ↦ (−,C,1, q′) ∗ f↦ (X,C,2, q′))] {
switch receive {
y = receive(cell,f): { dispose(y); }
ee = receive(fin,f): {}

}}
// f, y, ee⊩ ee =X ∧ f = Y ∧X ↦ (Y,C,1, q′) ∗ Y ↦ (X,C,2, q′)
close(ee,f);

} [f⊩ emp]

main(x) [x⊩ list(x)] {
local e,f;

(e,f) = open(C);
// x, e, f⊩ list(x) ∗ e =X ∗ f = Y ∗X ↦ (Y,C,1, q) ∗ Y ↦ (X,C,2, q)
put_list(e,x) || get_list(f);

} [x⊩ emph]

Figure 5.4: Proof of the cell-by-cell list transfer.

89

5.2. Examples

atm(a,b) [a, b⊩ a↦ (−,Cuser,2,wait) ∗ b↦ (−,Cbank,2,wait)] {
local k,h,id,amt;

while (true) [a, b, k, h, id, amt⊩ a↦ (−,Cuser,2,wait) ∗ b↦ (−,Cbank,2,wait)] {
k = receive(user_connect ,a);
id = receive(pin,k);

send(bank_init ,b,id);
h = receive(bank_connect ,b);

// a, b, k, h, id, amt⊩ a↦ (−,Cuser,2,wait) ∗ b↦ (−,Cbank,2,wait)
// ∗ k↦ (−,Cuser_session,2, i) ∗ h↦ (−,Cbank_session,2, i)
switch receive {

amt = receive(deposit_u ,k): {
send(deposit,h,id,amt);

}
amt = receive(withdraw_u ,k): {

send(withdraw,h,id,amt);
switch receive {

receive(success,h): { send(dispense,k,amt); }
receive(failure,h): { send(overdraft ,k); }

}
}
receive(balance_u ,k): {

send(balance,h,id);
amt = receive(receipt,h);
send(receipt,k,amt);

}
}

send(fin_u,k,k);
send(fin_b,h,h);

}
}

Figure 5.5: Proof of a simplistic ATM.

to receiving the right to use it, and sending an endpoint using the fin message is equivalent
to relinquishing one’s rights over it. Moreover, aside from the channels, only values are
exchanged; the cell heap plays no role in this example.

The protocols of this program can once again be expressed with contracts. The contracts
used to initiate the communications with the user and the bank simply wait for connection
requests. The mechanisms for connecting to the user and to the bank are different: in one

90

Chapter 5. Proving Copyless Message Passing

case, the user initiates the connection while in the other the ATM does.

Cuser ≜ ..wait..

!user_connect

Cbank ≜ ..wait...
!bank_init

.

!bank_connect

The contract between the user and the ATM follows the structure of the program:

Cuser_session ≜ ..i.. operation. end. end_end.

wdraw

.. !pin.
!deposit_u

.

!withdraw_u

.

!balance_u

.

?receipt

.

?dispense

.

?overdraft

. ?fin_u

This contract points out the fact that this ATM could be improved (as noted by Honda et
al.) to allow several operations in a row until the user quits. The protocol between the ATM
and the bank abides by the following contract:

Cbank_session ≜ ..i.. end. end_end.

wdraw

..
?deposit

.

?withdraw

.

?balance

.

!receipt

.

!success

.

!failure

. ?fin_b

Both contracts are strikingly similar, which reflects the fact that the ATM acts as a relay
between the user and the bank.

The footprints associated to the messages that open and close communication channels
in this example are as follows:

γuser_connect ≜ val↦ (−,Cuser_session,2, i)
γbank_connect ≜ val↦ (−,Cbank_session,2, i)

γfin_u ≜ val↦ (−,Cuser_session,2,end_end) ∧ val = src
γfin_b ≜ val↦ (−,Cbank_session,2,end_end) ∧ val = src

91

5.3. Restrictions of the proof system

Since all the other messages convey mere values, their associated footprint is emp.
All the contracts of this example are deterministic, positional and synchronising. By

Corollary 3.1, they are fault and leak-free hence as we will see in the next chapter the pro-
gram itself is race, fault and leak-free. One can give a session type for this program, as did
Honda et al. in the aforementioned paper [THK94], which would prove that it is fault-free.

5.3 Restrictions of the proof system

5.3.1 Deterministic contracts

In this chapter, as we have already pointed out, the protocols have to be expressible using
deterministic contracts. Were we to allow non-deterministic contracts in our analysis, we
would need the logic to keep track of the set of control states in which an endpoint might
be in order to soundly account for non-determinism, instead of a single control state. For
instance, an endpoint pointed to by x with mate X ′, starting in state q0 of the contract

C ≜
..q0.. q1. !a.

!a

could be in either one of the states q0 or q1 after sending a, hence would be best described
by x↦ (X ′,C,1,{q0, q1}). As they have been described, the proof rules would allow one
to prove, for a program p that sends a over x, the triple

{x↦ (X ′,C,1, q0)} p {x↦ (X ′,C,1, q1)}

whereas the semantics of p (defined in the next chapter) could choose to place x in the
control state q0 which, even without a formal soundness statement in mind, contradicts this
post-condition.

Modifying the proof rules of communications to handle sets of control states instead of
singletons is quite straightforward: one only has to extend succ to operate on sets of control
states. The definition of this new operation succ℘ becomes

succ℘(C, r,Q, τ) ≜ Q′ iff ∀q′ ∈ Q′.∃q ∈ Q. succ(C, r, q, τ) = q′ .

For instance, in the contract above,

succ℘(C,1,{q0}, !a) = {q0, q1} = succ℘(C,1,{q0, q1}, !a) .

The proof rules for open and close are modified in the following way: O creates end-
points in the singleton set of states {init(C)} and C requires that, if the two endpoints
are in the sets of possible control states Q1 and Q2 respectively and they follow contract C
(with appropriate roles), then Q1 ∩Q2 ∩ finals(C) is not empty.

92

Chapter 5. Proving Copyless Message Passing

5.3.2 Precision of message footprints

If footprints are not precise formulas, a variation of Reynolds’ original counter-example
(described page 73) can be replayed. We have to devise a program p such that the triple
{one ∨ emp} p {emp} is provable. Let us take Γ = a ∶ true and C be the following
contract:

..q0.. q1.
?cell

.

!cell

The following proof sketch can be formally derived using our proof system (recall that
one ≜ emps ∧ 10↦ −):
{(e⊩ e↦ (−,C,1, q0)) ∗ (one ∨ emp)}
receive(a,e);
{(e⊩ e↦ (−,C,1, q1)) ∗ (one ∨ emp) ∗ true}
{(e⊩ e↦ (−,C,1, q1)) ∗ true}
send(a,e);
{e⊩ e↦ (−,C,1, q0)}

This can obviously be used in lieu of the previous CCR example to produce a proof of

{(e⊩ e↦ (−,C,1, q0)) ∗ (one ∨ emp)} receive(a,e); send(a,e); {false}

This is inconsistent, because the program above does not diverge if a is present in e’s queue
at the beginning of the execution. Thus, we require message footprints to be precise, which
forbids this counter-example. As for concurrent separation logic, we used the conjunction
rule to derive unsoundness; one might be able to have soundness with imprecise footprints
if one gives up the conjunction rule.

The precision assumption comes into play in the proof of the locality of the command
send (see Lemma 6.5 page 114).

5.3.3 Channel closure leaks

As it stands, the rule of close can hide a leak if messages were still present in the queues
when the channel was closed. Consider for instance the following contract and proof sketch
for a program that sends a cell over a channel and closes it (weakening steps are omitted):

C ≜ ..q..

!cell

{e, f, x⊩ (e =X ∧ f = Y) ∧ (X ↦ (Y,C,1, q) ∗ Y ↦ (X,C,2, q) ∗ x↦ −)}
send(cell,e,x);
x = 0;
{e, f, x⊩ (e =X ∧ f = Y) ∧ (X ↦ (Y,C,1, q) ∗ Y ↦ (X,C,2, q))}
close(e,f);
{e, f, x⊩ emph}

93

5.3. Restrictions of the proof system

At the end of the execution of this program, x is still allocated, whereas the postcondition
of the Hoare triple states that the heap is empty. Hence, the proof system alone cannot
guarantee the absence of such leaks. We will see in the next chapter that requiring the
contracts to be leak-free (Definition 3.19) is enough to prevent them. However, another
kind of leaks is still possible, that does not depend on properties of the communicating
system but rather on those of the message footprints, as we are just about to see.

5.3.4 Cycles of ownership leaks

Our proof system has a defect: some memory leaks can go unnoticed by the rules when
a message footprint holds permission on the recipient endpoint, or more generally when
the queues of a set of endpoints can contain a set of messages whose footprints, when put
together, hold permission on all the peers of the endpoints of this set (in other words, when
the footprints of these messages all contain the endpoints on which they have to be received).
This makes it impossible, according to the logic, for a program to access these endpoints
and receive theses messages. In other words, the right to receive these messages is held by
the messages themselves, leading to an inextricable situation. This problem is very similar
in nature to the one encountered by Gotsman et al. with their proof system for storable
locks [GBC+07].

Let us give some intuitions on the source of the issue. For instance, if γep ≜ emps∧val↦
(−,−,−,−), then the following program proof can be derived, given a system C that allows
the sending of ep:
{e, f⊩ emph}
(e,f) = open(C);
{e, f⊩ e =X ∧ f = Y ∧ (X ↦ (Y,C, r, q) ∗ Y ↦ (X,C, r′, q′))}
send(ep,e,f);
{e, f⊩ e↦ (f,C, r, q′′)}

In this example, there is no ownership-abiding way of closing the channel (e, f), since
the ownership of the endpoint pointed to by f has been leaked away. This can be a means
of detecting such pathological situations, since most of the times channels will be closed
at some point in the program. However, more extreme situations are possible where the
whole channel “disappears.” For instance, with a footprint describing a whole channel
γchan ≜ emps ∧ val ↦ (Y,−,−,−) ∗ Y ↦ (val,−,−,−), the following program proof can
be derived, given a system C that allows the sending of chan:
{e, f⊩ emph}
(e,f) = open(C);
{e, f⊩ e =X ∧ f = Y ∧ (X ↦ (Y,C, r, q) ∗ Y ↦ (X,C, r′, q′)}
send(chan,e,e);
{e, f⊩ emph}

More complicated examples can be crafted if we try and forbid the previous situation by
taking γ′ep ≜ emps∧val↦ (X,−,−,−)∧X ≠ dst, which forbids sending the ownership of
the recipient endpoint within the message. For instance, using two channels that lock each
other:
{e, f, ee, ff⊩ emph}

94

Chapter 5. Proving Copyless Message Passing

(e,f) = open(C);
(ee,ff) = open(C);

{e, f⊩ e =X ∧ f = Y ∧ (X ↦ (Y,C, r, q) ∗ Y ↦ (X,C, r′, q′))
∗ee =X ′ ∧ ff = Y ′ ∧ (X ′ ↦ (Y ′,C, r, q) ∗ Y ′ ↦ (X ′,C, r′, q′)) }

send(ep,e,ff);
send(ep,ee,f);
{e, f⊩ e↦ (f,C, r, q′′) ∗ ee↦ (ff,C, r, q′′)}

In this example, the endpoint pointed to by f is in the queue of the one pointed to by ff
and vice-versa, making it impossible for the program to retrieve any of these two endpoints
without cheating the ownership assumption. In the logic, both endpoints have vanished
from the assertions, giving the false impression that someone else may own them, which
could hide some leaks.

We will show in Section 6.4.4 that one may avoid these pathological cycles of ownership
by considering only admissible footprints, for which they are impossible. For the formal
definition, we follow the terminology Gotsman et al..

Definition 5.1 (Admissible footprint context) A footprint context Γ = a1 ∶ γ1, . . . ,an ∶
γn is admissible if it is well-formed and if for all interpretations i, there do not exist

• a non-empty finite setA ⊆ {a1, . . . , an}×Endpoint×Val,A = {(bi, εi, vi) ∣ i ∈ I}
for some finite I ⊆N,

• endpoints ε′i and roles ri for each εi,

• and a state (s, h, k̇) such that (s, h, k̇) ⊧⊛i∈I γbi(εi, ε′i, ri, vi)

such that for all i ∈ I , ε′i ∈ dom(k̇) and k̇(ε′i) = (εi,−,3 − ri,−).

Informally, a footprint context is admissible if it is impossible to send a certain number
of messages that form a set A of tuples (a, ε, v) (where a is a tag in the domain of Γ, ε the
source endpoint and v the value of the message) whose footprints hold permissions on all
the buffers wherein they will be stored (the queues of the peers of all the source endpoints
of A). Indeed, if the footprints hold such permissions then the program cannot rightfully
receive any of the messages of A, hence their contents are leaked from an ownership point
of view (and possibly unreachable, for instance if one of the queues also contains a location
that is not referenced from anywhere else, which makes them a “real” leak in the sense that
the program has no means–right or wrong–to access them).

The footprint contexts ep ∶ γep and ep′ ∶ γ′ep above are not admissible. Let us show this
for γ′ep. We take A = {(ep, ε1, ε′2), (ep, ε′1, ε2)}. Consider the following state σ̇:

(∅,∅, [ε2 ∶ (ε1,C,1, q), ε′2 ∶ (ε′1,C,1, q)])

This state satisfies the combined footprints of the two messages:

σ̇ ⊧ γ′ep(ε1, ε2,0, ε′2) ∗ γ′ep(ε′1, ε′2,0, ε2)

As σ̇ owns the recipient endpoints ε2 and ε′2 of the two messages, the footprint of ep is not
admissible.

95

5.3. Restrictions of the proof system

Sufficient syntactic conditions. Fortunately, there are admissible footprint contexts.
For instance, every footprint that cannot allow ownership of one or several endpoints is
trivially admissible, as is any set of such footprints. However, a context with the footprint
of the fin message that we have used in our examples so far is not, as it can be used to send
both sides of a channel on themselves:
{e, f⊩ e =X ∧ f = Y ∧ (X ↦ (Y,C, r, q) ∗ Y ↦ (X,C, r′, q′)}
send(fin,e,e);
send(fin,f,f);
{e, f⊩ emph}

Fortunately, there is an easy fix: one can specify which side of the channel is to be sent
within the footprint. For instance, allowing only the first endpoint to be sent can be achieved
by taking γ′fin ≜ val↦ (dst,C,1, q) (or γ′fin ≜ val↦ (−,C,1, q) ∧ val = src).

A broader solution consists in allowing to send endpoints of only a certain role, which
must match the role of the endpoint sending them. The following lemma shows that this
is indeed sufficient to ensure admissibility. It also implies admissibility of footprints that
contain no endpoints.

Lemma 5.3 (Sufficient admissibility condition) Any footprint context Γ such that there
is r ∈ {0,1} such that for all γ ∈ Γ,

⊧ (γ ∧ (X ↦ (−,−,−,−) ∗ true))⇒ (γ ∧ (X ↦ (−,−, r,−) ∗ true ∧ rl = r))

is admissible.
Proof Suppose that Γ is not admissible and let us reuse the notations of Definition 5.1.
There is σ̇ = (s, h, k̇) such that (s, h, k̇) ⊧ ⊛i∈I γbi(εi, ε′i, ri, vi) and for all i ∈ I , ε′i ∈
dom(k̇) and k̇(ε′i) = (εi,−,3 − ri,−). Suppose that I = {1, . . . , n}. In particular, there
are σ̇1 = (s1, h1, k̇1) ⊧ γb1(ε1, ε′1, r1, vn), …, σ̇n = (sn, hn, k̇n) ⊧ γbn(εn, ε′n, rn, vn).
We can assume without loss of generality that none of the endpoint heaps k̇1, …, k̇n is
empty: if one of them k̇j is, then σ̇− σ̇j and⊛i∈I∖{j} γbi(εi, ε′i, ri, vi) also form a witness
that Γ is not admissible.

Let us show that the role of all the sending endpoints of the messages whose footprints
form the proof of non-admissibility of Γ are of the same role r. Because all the endpoint
heaps k̇i are non-empty, it is the case that, for all i ∈ I ,

σ̇i ⊧ γbi(εi, ε
′
i, ri, vi) ∧ (X ↦ (−,−,−,−) ∗ true) .

Hence, by application of the hypothesis of the lemma,

σ̇i ⊧ γbi(εi, ε
′
i, ri, vi) ∧ (X ↦ (−,−, r,−) ∗ true ∧ ri = r) .

Let us now show that supposing that Γ is not admissible is absurd. Consider any of the
recipient endpoints, for instance the first one, ε′1. Because ε′1 ∈ dom(k̇), ε′1 is also in the
domain of σ̇i for some i ∈ I , and

σ̇i ⊧ γbi(εi, ε
′
i, ri, vi) ∧ (ε′1 ↦ (−,−,−,−) ∗ true) .

96

Chapter 5. Proving Copyless Message Passing

By hypothesis of the lemma, it follows that

σ̇i ⊧ γbi(εi, ε
′
i, ri, vi) ∧ (ε′1 ↦ (−,−, ri,−) ∗ true) .

Thus, k̇(ε′1) = k̇i(ε′1) = (−,−, ri,−). Since ri = r = r1, k̇(ε′1) = (−,−, r1,−). Since
moreover k̇(ε′1) = (−,−,3 − r1,−), we obtain a contradiction: r1 = 3 − r1. ◻

We found that this criterion is sufficient in practise, as we have never needed more so-
phisticated ones in our case studies. It is easier to check, be it automatically (on certain
fragments) or by hand, than the general criterion.

It may be worth noting that the S♯ language also imposes an admissibility condition on
the endpoints that may be sent over channels: they may only be endpoints that are currently
in a sending state of their contract. Although this constraint arises in their setting because of
garbage collection considerations, we think that such a condition (translated into a constraint
over footprints) may also be sufficient (but not necessary) to ensure admissibility.

5.3.5 A first soundness result

Abstract separation logic There are numerous variants of separation logics. The goal
of abstract separation logic, developed by Calcagno, O’Hearn and Yang [COY07], is to iso-
late the crucial properties that make all these variants valid models of separation logic, that
is, models in which the F and P rules (see Figures 4.6 and 4.5) are sound.
There are fundamentally two ingredients to it: the underlying state model must be a sepa-
ration algebra, and the atomic commands must behave as local functions over these states.

The model and proof system presented in this section fit the framework of abstract sep-
aration logic if one extends it to handle local variables and external choice. Many other
models can be used as a basis for a separation logic: one can do away with the stack and
reason only on the heap. or attach permissions to variables and/or memory locations to
permit read-only sharing between programs.

The main theorem of abstract separation logic is a generic soundness result for all these
logics and models. This result can be instantiated to recover Brookes’ soundness result (see
Section 4.2.3). In fact, the soundness of our original message-passing logic was first proved
using abstract separation logic [VLC09]. To achieve this, we had to refine the proof system
and the underlying model of abstract separation logic to account for synchronisation and
communication issues. Indeed, as we will see below, inferring soundness from the rules
presented above would lead to a semantics for the programming language which would be
a very coarse approximation of the one presented in Chapter 2. The approach exposed in
this thesis is different: we prove the soundness of our logic directly from a refined version
of the operational semantics of Chapter 2 (see Chapter 6) instead of the denotational se-
mantics provided by the abstract separation logic framework. Thus, we will not state the
generic soundness result of abstract separation logic in this thesis, as it would require more
definitions, and instead refer the interested reader to the original publication on abstract
separation logic [COY07]. For our exposition, it suffices to know that such a result exists.

A coarse soundness result Since our proof system can benefit from the generic abstract
separation logic soundness result, let us give examples of the issues that a semantics derived

97

5.3. Restrictions of the proof system

solely from our proof system would meet, a more detailed account of which can be found
in the original paper [VLC09]. Let us give three example programs on which the semantics
directly derived from the proof rules via abstract separation logic would be too coarse, unlike
the semantics we will develop in the next section.

1. Receives may happen before the corresponding sending operation has happened. In-
deed, nothing in the proof rules prevents it, nor is it prevented by the interleaving
of traces, and these are the only things taken into account to build the semantics of
programs in abstract separation logic. For instance, given a freshly opened chan-
nel (e, f) over which one may communicate the message a, the following program
would not block:
receive(a,f);
send(a,e);

Indeed, the rule for receive says nothing about the contents of the queues of f (in fact,
queues are not even present in our model), so a semantics based on it may decide to
receive whenever the contract allows it.

2. What is sent does not necessarily match what is received. In fact, following the rules
S and CD, the semantics of send corresponds to disposing of the
message’s contents, and the one of receive to a non-deterministic allocation of a
portion of storage satisfying the message’s footprint. In particular, the program
(e,f) = open(C);
send(a,e,10);
x = receive(a,f);
close(e,f);

assigns 10 to x only if we choose φm such that it implies val = 10, whereas it should
always be equivalent to
x = 10;

This highlights another issue of this semantics: it depends on the footprint context,
which is supposed to be only an artifact of the proof.

3. The semantics would hide both forms of leaks described earlier, since the logic is
not aware of them: as far as the rules are concerned, the contents of messages dis-
appear when sent, and closing a channel is only about the endpoint heap, not the
corresponding buffers.

The next chapter is devoted to defining a satisfactory semantics and to establish the sound-
ness of our proof system with respects to this semantics.

Related work

To the best of this author’s knowledge, this is the first extension of separation logic to mes-
sage passing that supports copyless message passing. Not long after our own, another ex-
tension to copyless message passing has been published by Bell et al. [BAW10]. Their

98

Chapter 5. Proving Copyless Message Passing

logic bears remarkable similarities to ours, except on two points regarding communica-
tions: firstly, they support multiple producers and consumers communicating through a
single channel, that is they allow endpoints to be shared between processes; secondly, they
do not consider safety of communications as an issue, and thus do not consider contracts
(hence they model the contents of channel buffers explicitly in the logic). In our setting,
sharing endpoints, for instance by assigning permissions to them, would prove troublesome
in the logic: if a process shares an endpoint with its environment, then the control state as-
sociated to this endpoint may change at any time as a result of sends or receives performed
by the environment on this endpoint. Hence, the logic may no longer keep track of the cur-
rent state of this endpoint reliably. The proof of soundness of Bell et al. is closely related
to our first published proof of soundness [VLC09], where we overcome the difficulties that
come with local reasoning in abstract separation logic by assigning histories to endpoints,
as they also do.

Other extensions of concurrent separation logic have been created in the past. We have
already mentioned how Gotsman et al. have extended it to support storable locks, and how
their approach and ours were faced with similar problems in some respects. They are how-
ever concerned with objects different in nature. Vafeiadis, on the other hand, has extended
separation logic to support rely/guarantee reasoning. However, his work is about commu-
nications via shared variables, and the connection to the message-passing case is unclear,
short of implementing buffers and contracts using lower-level primitives.

99

C

Open Behaviours and Soundness

In this chapter, we define an open semantics for programs, with regards to which we prove
the soundness of the logic of Chapter 5. This open semantics is a triple point between the
proof rules, the semantics of Chapter 2, and the contracts of Chapter 3. Indeed, it gives an
operational meaning to the ownership transfers suggested by the proof rules, while being
connected both to the natural semantics of programs of Chapter 2 (henceforth the closed
semantics) and to the semantics of the contracts of the program. This allows us to use the
open semantics as an intermediate step in the proof of the soundness of our logic with respect
to the closed semantics: we first prove the soundness with respect to the open semantics, and
then connect the open semantics to the closed one. Similarly, we show that proved programs
inherit the absence of unexpected receptions and undelivered messages from their contracts.

The open semantics may be seen as an instrumentation of the closed semantics that makes
apparent the ownership transfers that occur when communications are performed on the one
hand, and the obedience to the channel contracts on the other hand. More precisely, the open
semantics of sending and receiving commands will be changed so that sending a message
removes its footprint from the local view, and receiving it adds the corresponding footprint.
So that what is received matches exactly what has been sent, the transient footprint is stored
in the receiving endpoint’s buffer along with the message identifier and value. Contrarily to
the closed one, the open semantics depends on a footprint context and a contract decoration
of the program.

The “open” character of this new semantics is also reflected in that it makes interferences
from the environment explicit. Indeed, interferences will be able to simulate the sending
and receiving of messages on those endpoints not in the program’s possession, in order
to account for the actions of the other programs that may be concurrently executing aside
from the current one (its environment). This is necessary to study the parallel composition
of two programs in a sound way: as each program is analysed independently from the other
(as stated by the P rule of Figure 4.5 page 71), one should be able to characterise the
behaviour of one of them whatever the other one (its environment) does, hence to account
for the behaviour of its environment.

The main results of this chapter are the soundness of the logic with respect to the open
semantics (Theorem 6.1), the connection between the validity for the open semantics with
fault-free contracts and the runtime safety of the closed semantics (Theorem 6.2), and the

101

6.1. Open states

leak freedom of programs provable under an admissible footprint context and leak-free con-
tracts (Theorem 6.3). Technical lemmas are kept in subsections 6.2.2, 6.3.1, 6.4.1 and 6.4.3.

Many proofs of other variants of separation logic exist. The original proof for concurrent
separation logic is due to Brookes [Bro07] and is also based on an intermediate “open” se-
mantics, although a denotational model based on complete traces is used instead of an opera-
tional one as in this thesis. This result was later made agnostic in the programming language
and the underlying state model by the framework of abstract separation logic [COY07], as
discussed in the previous chapter. Proofs for other extensions of separation logic include
several ones for RGSep [VP07, Vaf07] and for CSL with storable locks and threads, either
based on operational models [GBC+07], or on an oracle semantics [HAN08]. Some of
these proofs might be applicable to our logic and prove its consistency by somehow encod-
ing message passing into their framework. Yet, none of them include message passing or
contracts as primitives, and thus the links to the semantics of copyless message passing and
the semantics of contracts would be lost.

6.1 Open states

6.1.1 Well-formed open states

Definition From now on, the states defined in Section 2.2.1 are called closed states to
avoid ambiguities. The states defined in this chapter are called open states; they account for
the local view that the program has of the global state, as well as the buffers of the endpoints
of all channels, with footprints (represented by session states of the previous chapter) added
to each pending message. Open states extend both closed states and session states. They
are elements σ = ((s, h, k̇), k) of State, with

State ≜ ˙State × EHeap EHeap ≜ Endpoint⇀fin (MsgId ×Val × ˙State)∗

An open state σ = (σ̇, k) ∈ State can be decomposed as such, if one thinks of it as the
local state of a program:

• σ̇ is called the local part of the state, and is a session state that represents what is
currently owned by the program, that is what it may safely access and act upon;

• k is an open endpoint heap that associates open buffers to endpoints. An open buffer
is one where pieces of local state are attached to each pending message in the buffers.
The domain of k must be sufficiently large to associate a buffer to all the endpoints
that are allocated according to σ and to their peers (in other words, to each channel).
These endpoints can come from two sources: either they belong to the local state σ̇,
or they belong to one of the footprints stored in k itself. This gives rise to a rather
complicated well-formedness condition which is the subject of the rest of this section.

Flattening of a state As will become clear with the open operational semantics, the
footprints stored in the open buffers correspond to actual pieces of the global state that
have been previously sent away. Thus, one should be able to reconstruct the global state by

102

Chapter 6. Open Behaviours and Soundness

tacking all these footprints onto the local state, an operation we call flattening. Flattening
is useful both to obtain a global picture of the current state that includes all the information
stored in the pieces of state hidden in the buffers (for instance, to know who the peer of an
endpoint is, or what contract is associated to it) and to establish a correspondence between
the open and the closed semantics (as we do in Section 6.4). For the flattening of an open
state to be defined, all the corresponding session states should be pairwise disjoint and
compatible as session states. When this is the case, the open state is deemed flattable.

Definition 6.1 (Flattable state) An open state σ = (σ̇, k) is flattable if σ̇ and all the states
σ̇a for all (a, v, σ̇a) ∈ k(ε) and ε ∈ dom(k) are well-formed and pairwise compatible as
session states.

Flattable buffers and open endpoint heaps are defined similarly. The following flattening
function is defined on flattable open buffers and associates to an open buffer α the session
state formed by the concatenation of the footprints in α (where⊙ is the iterated version of
the composition ● of session states defined in the previous chapter):

flat(α) ≜ ⊙
(a,v,σ̇a)∈α

σ̇a

This represents the total amount of state that is stored inside a buffer. We overload this
function to concatenate the flattenings of all the buffers of a flattable open endpoint heap k:

flat(k) ≜ ⊙
ε∈dom(k)

flat(k(ε))

Finally, let us define the flattening of a flattable open state (one whose open endpoint
heap is flattable and compatible with its local state). Flattening applies to an open state by
tacking the flattenings of its buffers onto its local state:

Definition 6.2 (Flattening of an open state) The flattening of a flattable open state σ =
(σ̇, k) is defined as

flat((σ̇, k)) ≜ σ̇ ● flat(k) .

We can now define the set Statewf of well-formed open states.

Definition 6.3 (Statewf) An open state σ = (σ̇, k) is well-formed if it is flattable,
flat(σ) = (sf , hf , k̇f) and the following conditions are satisfied:

dom(k̇f) ⊆ dom(k) (OBuffers)
∀ε ∈ dom(k̇f).mate(k̇f , ε) ∈ dom(k) (OChannel)

The conditions (OBuffers) and (OChannel) ensure that every endpoint allocated in
any of the session states that appear in the open state σ is associated with a buffer in k, and
so is its peer. The other well-formedness conditions imposed on closed and session states
are already ensured by the fact that flat(σ) is flattable (see Lemma 6.8 for more details).

103

6.2. Open operational semantics

Open states composition The composition of two open states σ1 = (σ̇1, k1) and σ2 =
(σ̇2, k2) is defined provided that

• their local parts are disjoint and compatible as session states;

• k1 and k2 agree on the buffers of the endpoints in the intersection of their domains;

• the resulting open state, as defined below, is well-formed.

When this is the case, we write σ1 ♯σ2 and the composition is defined as

(σ̇1, k1) ● (σ̇2, k2) ≜ (σ̇1 ● σ̇2, k1 ∪ k2)

where the union of two partial functions f and g with the same codomain S is defined,
provided that they agree on the intersection of their respective domains of definition, as

f ∪ g ∶
dom(f) ∪ dom(g) ⇀ S

x ↦
⎧⎪⎪⎨⎪⎪⎩

f(x) if x ∈ dom(f)
g(x) if x ∈ dom(g)

6.2 Open operational semantics

From now on, let us consider as fixed a well-formed footprint context Γ.

6.2.1 Open semantics of programs

Notations As for the closed semantics, we define shorthands to describe updates to the
current open state, and more precisely to its local part. If k̇(ε) = (ε′,C, r, q), we write
control(k̇, ε) for q, role(k̇, ε) for r, and [k̇ ∣ control(ε)←q′] for [k̇ ∣ ε ∶ (ε′,C, r, q′)].

Given two session states σ̇1 and σ̇2, recall that σ̇1 is a substate of σ̇2, written σ̇1 ⪯ σ̇2, if
there is σ̇ such that σ̇1 ● σ̇ = σ̇2. In this case, σ̇ is unique, thus we can write σ̇2 − σ̇1 for the
only such σ̇.

Let us give the reduction rules of the open semantics. The rules implicitly depend on Γ
and are of the form p, σ → p′, σ′ or p, σ → error with

error ∈ {LeakError,MsgError,OwnError,ProtoError} .

The errors MsgError and OwnError have the same intuitive meanings as in Sec-
tion 2.2.2: they represent respectively reception and ownership runtime errors. A program
raises LeakError if it closes a channel with undelivered messages (thus creating a poten-
tial leak), and ProtoError if it does not act according to one of its contracts, either by
performing an unauthorised action on a channel, or because of a switch receive that is
not exhaustive with respect to one of the contracts involved.

Stack and heap commands For the stack and heap commands, the open semantics is
derived straightforwardly from the closed one, taking the local portion of the state as the
main stack and heap. The rules are shown in Figures 6.1 and 6.2. The semantics of new is
the only one that requires special attention, namely to avoid reusing a location that may be
hidden in the contents of a queue (which could result in an ill-formed state).

104

Chapter 6. Open Behaviours and Soundness

skip, σ → skip, σ

⟦B⟧s = true

assume(B), ((s, h, k̇), k)→ skip, ((s, h, k̇), k)

x ∈ dom(s) ⟦E⟧s = v

x = E, ((s, h, k̇), k)→ skip, (([s ∣ x ∶ v], h, k̇), k)

Figure 6.1: Operational semantics of stack commands.

flat(((s, h, k̇), k)) = (sf , hf , k̇f)
x ∈ dom(s) l ∈ Cell ∖ dom(hf) v ∈ Val

x = new(), ((s, h, k̇), k)→ skip, (([s ∣ x ∶ l], [h ∣ l ∶ v], k̇), k)

⟦E⟧s = l l ∈ dom(h)

dispose(E), ((s, h, k̇), k)→ skip, ((s, h ∖ l, k̇), k)

x ∈ dom(s) ⟦E⟧s = l h(l) = v

x = [E], ((s, h, k̇), k)→ skip, (([s ∣ x ∶ v], h, k̇), k)

⟦E1⟧s = l ⟦E2⟧s = v l ∈ dom(h)

[E1] = E2, ((s, h, k̇), k)→ skip, ((s, [h ∣ l ∶ v], k̇), k)

Figure 6.2: Operational semantics of heap commands.

Opening and closing a channel The semantics of open and close, shown in Fig-
ure 6.3, now takes the protocol of the channel into account: open creates a channel in the
initial state of the contract and close deletes it if both endpoints are in the same final state
of their contract and their buffers are empty. If this last condition is not satisfied, close
raises LeakError. If the channel is closed in a non-final state of the contract, it raises a
protocol error, and if the endpoints given as arguments do not form a channel, or are given
in the wrong order (this last condition could easily be dropped), an ownership error is raised.
Like new, open takes care not to reuse a location already present in one of the buffers, so
as not to create an ill-formed state. Because of the (OBuffers) constraint on well-formed
states, picking the new endpoints outside of the domain of k is enough.

105

6.2. Open operational semantics

e, f ∈ dom(s) ε, ε′ ∈ Endpoint ∖ dom(k) q0 = init(C)

(e,f) = open(C), ((s, h, k̇), k)→

skip,(([s ∣ e ∶ ε, f ∶ ε
′], h, [k̇ ∣ ε ∶ (ε′,C,1, q0), ε′ ∶ (ε,C,2, q0)]),

[k ∣ ε ∶ ␣, ε′ ∶ ␣])

⟦E1⟧s = ε1 ⟦E2⟧s = ε2 k̇(ε1) = (ε2,C,1, qf)

k̇(ε2) = (ε1,C,2, qf) qf ∈ finals(C) k(ε1) ⋅ k(ε2) = ␣

close(E1,E2), ((s, h, k̇), k)→ skip, ((s, h, k̇ ∖ {ε1, ε2}), k ∖ {ε1, ε2})

⟦E1⟧s = ε1 ⟦E2⟧s = ε2 k̇(ε1) = (ε2,C,1, qf)
k̇(ε2) = (ε1,C,2, qf) qf ∈ finals(C) k(ε1) ⋅ k(ε2) ≠ ␣

close(E1,E2), ((s, h, k̇), k)→ LeakError

⟦E1⟧s = ε1 ⟦E2⟧s = ε2
k̇(ε1) = (ε2,C,1, q1) k̇(ε2) = (ε1,C,2, q2) q1 ≠ q2 or q1 ∉ finals(C)

close(E1,E2), ((s, h, k̇), k)→ ProtoError

⟦E1⟧s = ε1 ⟦E2⟧s = ε2 k̇(ε1) = (ε′2,C, r, q) ε′2 ≠ ε2 or r ≠ 1
close(E1,E2), ((s, h, k̇), k)→OwnError

Figure 6.3: Open operational semantics of channel creation and destruction.

Sending a message The semantics of send is shown in Figure 6.4 and is split into three
cases. Let us begin with the successful one: the endpoint and the value are accessible, the
send is authorised by the contract, and enough state is held to find a substate that satisfies
the message’s footprint. Note that, as discussed in the description of the S rule in the
previous chapter, the control state of the sending endpoint is updated before the message
is sent, so the footprint is checked against the updated state. When the footprint cannot be
found in this state, an ownership error is issued. Similarly, if the send is not permitted by
the current state of the contract, a protocol error is raised.

External choice and receiving a message The reduction rules that correspond to re-
ceiving a message via a guarded external choice are shown in Figure 6.5. There are four
cases: it can either succeed and proceed with one of its branches, or fail, either because the
receive is prohibited by the protocol, or because an unexpected message is present at the
head of one of the inspected queues, or because, although no unexpected message is nec-
essarily present, the contract stipulates that a message that is not expected by the program
could be available.

106

Chapter 6. Open Behaviours and Soundness

⟦E1⟧s = ε ⟦E2⟧s = v k̇(ε) = (ε′,C, r, q)
succ(C, r, q, !a) = q′ σ̇a ⪯ (s, h, [k̇ ∣ control(ε)←q′]) σ̇a ⊧ γa(ε, ε′, r, v)

send(a,E1,E2), ((s, h, k̇), k)→
skip, ((s, h, [k̇ ∣ control(ε)←q′]) − σ̇a, [k ∣ ε′ ∶ k(ε′) ⋅ (a, v, σ̇a)])

⟦E1⟧s = ε ⟦E2⟧s = v k̇(ε) = (ε′,C, r, q) succ(C, r, q, !a) = q′

¬∃σ̇a. σ̇a ⪯ (s, h, [k̇ ∣ control(ε)←q′]) & σ̇a ⊧ γa(ε, ε′, r, v)
send(a,E1,E2), ((s, h, k̇), k)→OwnError

⟦E1⟧s = ε k̇(ε) = (ε′,C, r, q) ¬∃q′. succ(C, r, q, !a) = q′

send(a,E1,E2), ((s, h, k̇), k)→ ProtoError

Figure 6.4: Open operational semantics of send.

In the successful case, a message identifier is present at the head of an endpoint’s buffer
and the corresponding branch is selected. Conversely to the case of send, the footprint
corresponding to the message is seized and added to the current local portion of state. This
operation is possible because we always assume the states we consider to be well-formed
(a property we will see is preserved by the reduction rules in Lemma 6.2), hence flattable,
so σ̇a is guaranteed to be compatible with (s, h, k̇). The message is then removed from the
queue, the value stored into the appropriate variable xi and the control state of the endpoint
is updated.

If no such successor exists, ProtoError is raised. If an unexpected reception occurs
MsgError is raised. Finally, and similarly to the logical treatment of guarded external
choice, not taking into account all the possible messages that can be received according to
its contract is a fault, and the program reduces to ProtoError.

Programming constructs The semantics of the remaining programming constructs is
given in Figure 6.6. The rules are identical to the closed semantics ones, with two excep-
tions. First, the detection of races uses a different, finer-tuned (as will see in Lemma 6.10)
function, based on the local part of the state, which is closer to what is required by the P-
 rule of the proof system: the predicate norace(p1, p2, σ) is false if it is impossible
to partition σ into two substates with disjoint local parts on which each program can safely
make a step. Formally, norace(p1, p2, σ) holds if and only if there exist well-formed open
states σ1 and σ2 such that σ1 ● σ2 = σ and

p1, σ1 /→OwnError
& p2, σ2 /→OwnError .

The second difference is in the treatment of the local variable construct. As in the case

107

6.2. Open operational semantics

x1, . . . , xn ∈ dom(s)

⟦E1⟧s ∈ dom(k̇) & . . . & ⟦En⟧s ∈ dom(k̇) ⟦Ei⟧s = εi
k̇(εi) = (ε′,C, r, q) k(εi) = (ai, v, σ̇i) ⋅ α succ(C, r, q, !ai) = q′

nü

j=1
xj = receive(aj,Ej): pj , ((s, h, k̇), k)→

pi, (([s ∣ xi ∶ v], h, [k̇ ∣ control(εi)←q′]) ● σ̇i, [k ∣ εi ∶ α])

⟦Ei⟧s = εi k̇(εi) = (ε′,C, r, q) ¬∃q′. succ(C, r, q, ?ai) = q′
nü

j=1
xj = receive(aj,Ej): pj , ((s, h, k̇), k)→ ProtoError

⟦E1⟧s = ε1 & . . . & ⟦En⟧s = εn k(εi) = (a, v, σ̇a) ⋅ α ∀j. εj = εi ⇒ aj ≠ a
nü

j=1
xj = receive(aj,Ej): pj , ((s, h, k̇), k)→MsgError

⟦E1⟧s = ε1 & . . . & ⟦En⟧s = εn
k̇(εi) = (ε′,C, r, q) ∃a.∃q′. succ(C, r, q, ?a) = q′ & ∀j. εj = εi ⇒ aj ≠ a

nü

j=1
xj = receive(aj,Ej): pj , ((s, h, k̇), k)→ ProtoError

Figure 6.5: Open operational semantics of external choice and receive.

of new, we now have to take into account not only the domain of the surface stack, but also
all the variables that are allocated in the footprints of the messages of all buffers in order to
avoid creating ill-formed states.

6.2.2 Subject reduction

Let us describe two properties of open states that are preserved by program reductions:
well-formedness with respect to Γ, which supersedes well-formedness, and being ceremo-
nious, that is having buffers consistent with the contracts and current control states of the
endpoints.

Well-formedness with respect to a footprint context Given a footprint context Γ,
it is natural to define the notion of well-formedness w.r.t. Γ: for each element (a, v, σ̇a)
of the buffer of an endpoint ε whose peer is ε′ and has role r′, it should be the case that
σ̇a ⊧ γa(ε′, ε, r′, v). The set of all such states is denoted by StatewfΓ . This will crucially
help us in proving the soundness of the CD rule: receiving a message a

108

Chapter 6. Open Behaviours and Soundness

p1 + p2, σ → p1, σ p1 + p2, σ → p2, σ

p1, σ → p′1, σ
′

p1; p2, σ → p′1; p2, σ
′ skip; p2, σ → p2, σ

p1, σ → error

p1; p2, σ → error

norace(p1, p2, σ) p1, σ → p′1, σ
′

p1 ∥ p2, σ → p′1 ∥ p2, σ′
p1, σ → error

p1 ∥ p2, σ → error

norace(p1, p2, σ) p2, σ → p′2, σ
′

p1 ∥ p2, σ → p1 ∥ p′2, σ′
p2, σ → error

p1 ∥ p2, σ → error

p∗, σ → skip + (p; p∗), σ
y ∈ dom(s)

delete(y), ((s, h, k̇), k)→ skip, ((s ∖ {y}, h, k̇), k)

flat(((s, h, k̇), k)) = (sf , hf , k̇f) v ∈ Val y ∉ dom(sf) ∪ freevar(p)
local x in p, ((s, h, k̇), k)→ p[x←y]; delete(y), (([s ∣ y ∶ v], h, k̇), k)

Figure 6.6: Operational semantics of programming constructs.

from a state that is well-formed with respect to Γ adds a piece of state verifying γa to the
local state.

Definition 6.4 (StatewfΓ) An open state σ = (σ̇, k), with flat(σ) = (sf , hf , k̇f), is well-
formed w.r.t. the footprint context Γ if

• σ is a well-formed open state;

• for all endpoint ε ∈ dom(k̇f), if k̇f(ε) = (ε′,C, r, q) then for all (a, v, σ̇a) ∈ k(ε),

σ̇a ⊧ γa(ε′, ε, r, v) .

Note that if σ1 and σ2 are both well-formed with respect to Γ, then σ1 ● σ2 is also well-
formed with respect toΓ if and only if it is well-formed. Hence, we do not need an additional
notation for compatibility in that sense.

Let us detail what well-formed open states with respect to a footprint context are in two
special cases: the context where no constraint is put on the footprints (notice that in this
case they are not precise, hence the footprint context is ill-formed), and the one where all
footprints are empty.

• If Γtrue is the footprint context where all messages are associated to the footprint
true, then σ is well-formed with respect to Γtrue if and only if it is well-formed.

109

6.2. Open operational semantics

• If Γemp is the footprint context where all messages are associated to the footprint
emp, then (σ̇, k) is well-formed with respect to Γemp if and only if it is well-formed
and flat(k) = u̇.

Ceremonious states Ceremonious states emerge from the following intuition: given a
channel (ε, ε′) in an open state σ = (σ̇, k), the contents of the buffers of the two endpoints
in terms of message identifiers should be consistent with the control states of the contract
that they are in according to σ. This notion is crucial to translate properties of contracts into
properties of the program, and to define what the environment is allowed to do (in particular,
it will only be able to produce ceremonious states).

We first define the contract configurations associated to a channel in a given open state.
Let σ = (σ̇, k) and flat(σ) = (sf , hf , k̇f). The set of channels of σ is the set of pairs
(ε, ε′) such that at least one of ε, ε′ belongs to dom(k̇f):

chans(σ) ≜ {(ε, ε′) ∣ mate(k̇f , ε) = ε′} .

Note that, because at least one of the two endpoints of a channel of σ must appear in the
domain of k̇f , the channels of σ are all associated to a contract, the roles of the endpoints
are known, and so is the control state of at least one of the two endpoints.

Notations Given an open state σ such that flat(σ) = (sf , hf , k̇f), if k̇(ε) = (ε′,C, r, q)
is defined then we write contract(σ, ε) for C, role(σ, ε) for r and control(σ, ε) for q.
Given an open buffer α = (a1, v1, σ̇1)⋯(an, vn, σ̇n), we write word(α) for a1⋯an.

Definition 6.5 (Contract configuration of a channel) Let σ be a well-formed open state
such that flat(σ) = (sf , hf , k̇f) and (ε, ε′) ∈ chans(σ). The set of contract configura-
tions cconf (σ, ε) associated to ε (or to (ε, ε′)) is

{⟨q, q′,word(k(ε)),word(k(ε′))⟩ ∣{ ε ∈ dom(k̇f)⇒ q = control(k̇f , ε)
ε′ ∈ dom(k̇f)⇒ q′ = control(k̇f , ε′)

} .

A ceremonious state is one in which in every set of contract configuration of every channel
there is a configuration reachable by the contract attached to the channel from its initial state.
Let us remark that this is not the case in general for arbitrary well-formed open states. Take
for instance the following state:

((s, h, [ε ∶ (ε′,C,1, q0), ε′ ∶ (ε,C,2, q0)]), u̇, [ε ∶ (a, v, u̇), ε′ ∶ ␣])

where C is the contract
..q0.. q1. !a

. The contents of the buffer of ε is not coher-
ent with the fact that ε and ε′ are both in the initial state of C. The only acceptable queues
for ε and ε′ in this local state would be the empty ones. In contrast, the following states are
ceremonious:

((s, h, [ε ∶ (ε′,C,1, q0), ε′ ∶ (ε,C,2, q0)]), u̇, [ε ∶ ␣, ε′ ∶ ␣])
((s, h, [ε ∶ (ε′,C,1, q1), ε′ ∶ (ε,C,2, q0)]), u̇, [ε ∶ ␣, ε′ ∶ (a, v, u̇)])
((s, h, [ε ∶ (ε′,C,1, q1), ε′ ∶ (ε,C,2, q1)]), u̇, [ε ∶ ␣, ε′ ∶ ␣])

110

Chapter 6. Open Behaviours and Soundness

Let us formalise this intuition.

Definition 6.6 (Ceremonious state) Given a well-formed open state σ and an endpoint ε
such that cconf (σ, ε) is defined and contract(σ, ε) = C, we say that σ is ceremonious
for ε if

∃C ∈ cconf (σ, ε). ⟨init(C), init(C), ␣, ␣⟩→∗C C .

A state σ is ceremonious if it is well-formed and ceremonious for each endpoint ε such
that cconf (σ, ε) is defined.

The set of ceremonious states is denoted byStatectt, and the set of ceremonious states that
are well-formed with respect to Γ by StatecttΓ . Note that Statectt ⊂ Statewf and StatecttΓ ⊆
StatewfΓ .

Let us show that ceremonious states with respect to a footprint context are stable by trans-
formations by ceremonious programs (those that do not reduce into a protocol error), with
the help of the following lemma. For two sets of configurations S1 and S2, we say that there
is a transition from S1 to S2 by the contract C and write S1 →C S2 if

∀C ′ ∈ S′.∃C ∈ S.C →C C
′ .

Lemma 6.1 For all p, p′, σ, σ′, ε, ε′, if

• p, σ → p′, σ′

• (ε, ε′) ∈ chans(σ′)

• contract(σ′, ε) = C

then

1. either contract(σ, ε) is undefined and cconf (σ′, ε) = {⟨init(C), init(C), ␣, ␣⟩}

2. or contract(σ, ε) = C, (ε, ε′) ∈ chans(σ, ε) and

⎧⎪⎪⎨⎪⎪⎩

cconf (σ, ε)→C cconf (σ′, ε) or
cconf (σ, ε) = cconf (σ′, ε)

Proof Let σ = (σ̇, k) and σ′ = (σ̇′, k′). If the transition p, σ → p′, σ′ is not a channel
operation then k = k′ and the result is immediate. Let us analyse the remaining cases. Let
us fix some ε satisfying all the above hypothesis.

Let us assume first that ε is not one of the two endpoints of the channel over which the
instruction applies. It can be observed that control(⋅, ε) is either undefined in both σ and
σ′, or defined in both σ and σ′, in which case control(σ, ε) = control(σ′, ε) (recall that
control(σ, ⋅) is defined according to the flattening of σ). Thus, for an endpoint that is not
one of the endpoints of the channel over which some action is performed, the constraint
is the same in σ and σ′, and cconf (σ, ε) = cconf (σ′, ε), which shows that case 2 above
holds.

Let us assume now that ε is one of the two endpoints of the channel over which the
instruction applies, and reason by case analysis on the instruction.

111

6.3. Soundness

• close: Since contract(σ′, ε) = C is defined by hypothesis, ε is not the closed chan-
nel. This case is thus impossible.

• open: Case 1 above holds.

• send: Let us show that case 2 above holds, and in particular that cconf (σ, ε) →C

cconf (σ′, ε). By symmetry, we may assume that ε is the endpoint used for sending.
By the rule of send, control(σ, ε) and control(σ′, ε)must be defined and equal to
some control states q1 and q2. Moreover, the rule also ensure that there is a transition
q1

!aÐ→ q2 in C. Let C2 = ⟨q2, q′2,w2,w
′
2⟩ be a configuration in cconf (σ′, ε). Then

w′2 = w′1 ⋅ a, and C1 = ⟨q1, q′2,w2,w
′
1⟩ → C2. Moreover, C1 ∈ cconf (σ′, ε) since

q′2 is constrained in the same way in σ and σ′.

• receive and external choice: Same arguments as for send. ◻

Lemma 6.2 (Subject reduction) If σ ∈ StatecttΓ and p, σ → p′, σ′, then σ′ ∈ StatecttΓ .
Proof The fact that well-formedness with respect to a footprint context is preserved by
the reductions of a program is immediate from the reduction rules presented in the previous
subsection. Let us focus on the ceremonious property.

Let us check each point of the definition of ceremonious states forσ′. Firstly, it is flattable.
Secondly, let (ε, ε′) ∈ chans(σ′) be such that contract(σ′, (ε, ε′)) is defined and equal
to C, with init(C) = q0. We need to show that there is C ′ ∈ cconf (σ′, ε) such that

⟨q0, q0, ␣, ␣⟩→∗C C
′ .

We can apply the previous lemma. If we are in the first case, the result is immediate.
If we are in the second case, then either ∀C ′ ∈ cconf (σ′, ε).∃C ∈ cconf (σ, ε).C →C

C′ or cconf (σ, ε) = cconf (σ′, ε). From the hypothesis that σ is ceremonious, there is
C ∈ cconf (σ, ε) such that ⟨q0, q0, ␣, ␣⟩ →∗C C. If cconf (σ, ε) = cconf (σ′, ε), then C ∈
cconf (σ′, ε). Otherwise since p, σ → p′, σ′, p, σ /→ ProtoError, hence cconf (σ′, ε) ≠
∅. Since moreover cconf (σ, ε) →C cconf (σ′, ε), there are finally C ∈ cconf (σ, ε) and
C′ ∈ cconf (σ′, ε) such that ⟨q0, q0, ␣, ␣⟩→∗C C →C C

′, which ends the proof. ◻

6.3 Soundness

6.3.1 Locality up to interferences

We prove here crucial technical lemmas about the properties of the open operational se-
mantics that will allow us to derive the soundness of our proof system in the next subsec-
tion. The structure of the lemmas is similar in essence to previous work, for instance by
Brookes [Bro07] or Vafeiadis [Vaf07]. There is however one important difference: in the
present setting, interferences are needed to express the behaviour of an open program (one
that may receive messages from the environment or send to it, because it possesses only one
end of a particular channel), which has non-trivial consequences on the formulation of the
locality and parallel decomposition lemmas (Lemmas 6.5 and 6.6).

112

Chapter 6. Open Behaviours and Soundness

(σ̇, k′) ∈ StatecttΓ

(σ̇, k)⇢ (σ̇, k′)
σ ⇢ σ′

p, σ ↝ p, σ′
p, σ → p′, σ′

p, σ ↝ p′, σ′

Figure 6.7: Open operational semantics of interferences.

Environment interferences Interferences from the environment are modelled by a sin-
gle rule, given in Figure 6.7. The rule transforms an open state into one with the same local
state, but where the contents of the buffers may have changed. The resulting state must re-
main ceremonious with respect to the footprint context. The changes include the possibility
for the environment to perform sends and receives on endpoints that are not directly con-
trolled by the program, in accordance with their contracts, and to open and close channels
not visible to the program. Interferences are denoted using a dashed arrow “⇢,” and tran-
sitions that are either a program step or an interference are written with a squiggly arrow
“↝.”

This modelling is an over-approximation of what a ceremonious environment (that also
respects the ownership hypothesis) might really do: with this definition, the environment
can modify the buffers of endpoints owned by the program, and even of endpoints in the
local state of the program, provided that it leaves the buffers in a state coherent with the
protocols of these endpoints. An environment respecting the ownership hypothesis would
not modify the buffers of endpoints owned by the program. We claim that giving a more
precise account of interferences is possible, but that it would needlessly complicate the
presentation since this over-approximation is enough to prove the soundness of our logic.

Let us first make an observation about the behaviour of interferences on the substates of
an open state, which follows from the following lemma on ceremonious states.

Lemma 6.3 For all σ̇, σ̇′ ∈ ˙State and k ∈ EHeap, if (σ̇ ● σ̇′, k) ∈ StatecttΓ then (σ̇, k) ∈
StatecttΓ .
Proof Removing pieces of the local state merely removes constraints on the resulting open
state. ◻

Lemma 6.4 For all pairs of compatible open states σ1, σ2 such that σ1 ● σ2 ∈ State
ctt
Γ ,

if
σ1 ● σ2 ⇢ σ′

then there are σ′1, σ′2 such that σ′1 ● σ′2 = σ′ and

σ1 ⇢ σ′1 σ2 ⇢ σ′2

Proof Let σ1 = (σ̇1, k1) and σ2 = (σ̇2, k2). According to the hypotheses, there is k′

such that
(σ̇1 ● σ̇2, k1 ∪ k2)⇢ (σ̇1 ● σ̇2, k

′) .

113

6.3. Soundness

By definition of interferences, (σ̇1 ● σ̇2, k′) ∈ StatecttΓ , hence by Lemma 6.3, (σ̇1, k′) ∈
StatecttΓ , so σ1 ⇢ (σ̇1, k

′), and similarly for σ2, which concludes the proof. ◻
We can now state the locality and parallel decomposition lemmas, which are crucial in-

gredients of the proof of soundness of the next subsection.

Lemma 6.5 (Locality) For all program p and open states σ1 and σ2 such that σ1 ♯σ2
and σ1 ● σ2 ∈ State

ctt
Γ ,

1. if p, σ1 ● σ2 ↝∗ error then p, σ1 ↝∗ error or p, σ1 ↝∗ OwnError;

2. if p, σ1 ● σ2 ↝∗ p′, σ′ then either p, σ1 ↝∗ error or there exists σ′1, σ′2 such that

• σ′ = σ′1 ● σ′2;

• p, σ1 ↝∗ p′, σ′1;

• σ2 ⇢ σ′2.
Proof The two parts of the lemma can be proved independently. The first part of the
lemma follows from a straightforward induction on the length of the derivation and a case
analysis on p. Let us focus on the second property.

For all commands except for communications and interferences, this property actually has
a stronger formulation, identical to the usual locality principle of separation logic models,
where interferences are not needed and σ2 remains untouched. For all these commands, and
more generally for all programs p′made only out of these commands, if p′, σ1●σ2 →∗ p′, σ′
then either p′, σ1 →∗ error or there exists σ′1 ♯σ2 such that

• σ′ = σ′1 ● σ2;

• p, σ1 →∗ p′, σ′1.

This is a standard result, straightforward to prove by a case analysis on p′ [Bro07, Vaf07].
Let us now examine the case of open, close, send, external choice, receive, and in-

terferences. Let σ1 = ((s1, h1, k̇1), k1) and σ2 = (σ̇2, k2).

• p = (e,f) = open(C): Straightforward: ε, ε′ ∈ Endpoint∖dom(k1∪k2) implies
ε, ε′ ∈ Endpoint ∖ dom(k1). No interference is needed on σ2.

• p = close(E1,E2): A step of interference can erase the endpoints involved if they
are also present in k2 and p has deallocated them from k1.

• Suppose that p = send(a,E1,E2), that all the hypotheses of the successful execu-
tion of p hold on σ1 (otherwise the command faults, which also satisfies the lemma)
and that the execution results in σ′1. Because of the precision assumption on message
footprints, the session state σ̇a chosen in σ1 must be the same as the one from the
execution on σ. It suffices to take σ′2 = (σ̇2, [k ∣ ε′ ∶ k1(ε′) ⋅ (a, v, σ̇a)]) to have
σ′1 ● σ′2 = σ′.
Note that this reasoning would be invalidated by an imprecise footprint γa for a: in
that case, if we pick σ2 to be the piece of state whose local part is the session state σ̇a

114

Chapter 6. Open Behaviours and Soundness

chosen by the reduction of p on σ to be sent away, and if σ1 contains another possible
candidate σ̇′a satisfying γa, then the semantics could chose to send σ̇′a starting from
σ1, and the resulting state could not be connected back to σ′ (in particular, it would
contain σ̇a in its local part, whereas σ′ does not).

• The case of receive is similar. The requirement of having precise footprints does
not impact the reasoning for this command, since the piece of state to be received is
already determined by the contents of the buffer.

• If the step was an interference then the property to prove corresponds to Lemma 6.4.
◻

Lemma 6.6 (Parallel decomposition) For all pair of programs p1, p2, for all state σ and
for all σ1, σ2 such that σ1 ● σ2 = σ,

1. if p1 ∥ p2, σ ↝∗ error then p1, σ1 ↝∗ error or p2, σ2 ↝∗ error;

2. if p1 ∥ p2, σ ↝∗ p′1 ∥ p′2, σ′ then p1, σ1 ↝∗ error or p2, σ2 ↝∗ error or there are
disjoint states σ′1, σ′2 such that σ′ = σ′1 ● σ′2 and

• p1, σ1 ↝∗ p′1, σ′1 and
• p2, σ2 ↝∗ p′2, σ′2.

Proof The first point is obvious from the semantics of ∥ andnorace by using Lemma 6.5.1.
For the second point, let us proceed by induction on the length n of the computation of
p1 ∥ p2, the base case of a computation of length 0 being trivial.

Suppose that the proposition holds for n computation steps, and that p1 ∥ p2, σ ↝n+1

p′1 ∥ p′2, σ′. This execution can be decomposed as

p1 ∥ p2, σ ↝ p′′1 ∥ p′′2 , σ′′ ↝n p′1 ∥ p′2, σ′

By induction hypothesis, for all σ′′1 , σ
′′
2 such that σ′′1 ● σ′′2 = σ′′, either p′′1 or p′′2 faults

respectively on σ′′1 and σ′′2 , or there are disjoint states σ′1, σ′2 such that σ′ = σ′1 ● σ′2 and

• p′′1 , σ
′′
1 ↝∗ p′1, σ′1 and

• p′′2 , σ
′′
2 ↝∗ p′2, σ′2.

We have to prove that either p1 or p2 faults respectively on σ1 and σ2, or that there exist
p′′1 , p′′2 , σ′′1 and σ′′2 such that p1, σ1 ↝∗ p′′1 , σ′′1 , p2, σ2 ↝∗ p′′2 , σ′′2 and σ′′1 ● σ′′2 = σ′′. For
this purpose, we perform a case analysis on the first step of the computation of p1 ∥ p2:

• If this was an environment step, then p′′1 = p1, p′′2 = p2 and Lemma 6.4 gives us σ′′1
and σ′′2 such that σ′′1 ● σ′′2 = σ′′.

• If p1 did a step: p1, σ → p′′1 , σ
′′, then by Lemma 6.5, either p1, σ1 → error or

there are σ′′1 , σ′′2 such that p1, σ1 ↝ p′′1 , σ
′′
1 , σ2 ⇢ σ′′2 and σ′′1 ● σ′′2 = σ′′. By taking

p′′2 = p2, we finish the proof.

• If p2 did a step the argument is symmetric. ◻

115

6.3. Soundness

6.3.2 Soundness

Before defining what it means semantically for a program to satisfy a specification given as
a Hoare triple, we need to define what it means for an open state to satisfy a formula of our
logic.

Definition 6.7 (Formula satisfaction for open states) An open state σ satisfies a formula
φ, written σ ⊧ φ, if its local part does:

(k̇, k), i ⊧ φ iff k̇, i ⊧ φ .

Let us remark that formula satisfaction is stable under interferences from the environment.

Lemma 6.7 For all σ,σ′ ∈ StatecttΓ , all formula φ and all valuation i, if σ, i ⊧ φ and
σ ⇢ σ′ then σ′, i ⊧ φ.
Proof Immediate using the definitions of satisfaction and interferences: the latter cannot
change the local state of σ, which is the only part of the state that is used to determine
whether or not σ, i ⊧ φ holds. ◻

Definition 6.8 (Validity) A triple is valid with respect to a footprint context Γ, written
⊧Γ {φ} p {ψ}, if, for all logical stack i and all state σ ∈ StatecttΓ , if σ, i ⊧ φ, then the
following properties hold:

1. p, σ /↝∗ OwnError;

2. p, σ /↝∗ ProtoError;

3. if p, σ ↝∗ skip, σ′, then σ′, i ⊧ ψ.

Theorem 6.1 (Soundness) If ⊢Γ {φ} p {ψ} then ⊧Γ {φ} p {ψ}.
Proof We prove this theorem by induction on the structure of the proof of {φ} p {ψ}.
Suppose first that it is one of the axioms of the proof system (see Figures 4.4 and 5.1). We
proceed by case analysis. Let σ = ((s, h, k̇), k).

• A: Suppose that σ, i ⊧ var(B)⊩ emph. If follows that dom(s) = var(B),
hence ⟦B⟧s is defined. If it evaluates to true, then σ, i ⊧ var(B) ⊩ B ∧ emph,
which is the postcondition. If not, then the program diverges, hence the property is
also satisfied.

• A, N, D, L, M, O, C: similarly straightforward.

• S: Suppose that

σ, i ⊧ E1 =X ∧E2 = Y
∧ (X ↦ (X ′,C, r, q) ∗ (X ↦ (X ′,C, r, q′) −−∗ γa(X,X ′, r, Y) ∗ φ))

116

Chapter 6. Open Behaviours and Soundness

In particular, the local part of σ holds ownership of var(E1,E2) and of the endpoint
pointed to by E1. If i(X) = ε, i(X ′) = ε′ and i(Y) = v, then

σ, i ⊧X ↦ (X ′,C, r, q) ∗ (X ↦ (X ′,C, r, q′) −−∗ γa(X,X ′, r, Y) ∗ φ)

Thus, σ̇ = (s, h, [k̇ ∣ control(ε)←q′]), i ⊧ γa(X,X ′, r, Y) ∗ φ. Hence, there are
σ̇a and σ̇′ such that σ̇a ● σ̇′ = σ̇, σ̇a, i ⊧ γa(X,X ′, r, Y) and σ̇′, i ⊧ φ. This forbids
the program to reduce to OwnError by the second reduction rule of send. The
premise of the S rule moreover forbids the program to reduce to ProtoError,
hence only the first (and successful) reduction rule of send applies, and the resulting
state is (σ̇′, [k ∣ ε′ ∶ k(ε′) ⋅ (a, v, σ̇a)]). As previously stated σ̇′, i ⊧ φ, hence the
result.

Let us now assume that ⊢Γ {φ} p {ψ} is not an axiom. We discriminate on the last
inference rule of the proof tree (see Figures 5.1, 4.5 and 4.6). Let again σ = ((s, h, k̇), k).

• CD: Suppose that σ, i ⊧ (Y ′,C, r, q) ∗ φ. The first precondition of
the inference rule,

φ⇒
n

⋀
i=1
(Ei = Y ∧ xi =Xi) ∗ true

ensures that the program has enough resources not to reduce to OwnError in one
step. The second one,

{ai ∣ i ∈ {1, . . . , n}} = {a ∣ ∃q′. succ(C, r, q, ?a) = q′}

prevents both the second and the last of the four reduction rules of receive to apply,
hence p, σ /→ ProtoError. Let us assume that p, σ /→MsgError. Then, there
is i such that

p, σ → pi, (([s ∣ xi ∶ v], h, [k̇ ∣ control(εi)←q′]) ● σ̇i, [k ∣ εi ∶ α])

Let us write σ′ for the resulting open state. Since σ ∈ StatecttΓ , σ̇i, i ⊧ γai(Y ′, Y,3−
r,Z) for some Z such that i(Z) = v. Hence,

σ′, i ⊧ xi = Z ∧ (Y ↦ (Y ′,C, r, q′) ∗ φ ∗ γai(Y
′, Y,3 − r,Z))

By induction hypothesis, and since we know from the premises of CD
that

⊢Γ {xi = Z ∧ (Y ↦ (Y ′,C, r, q′) ∗ φ ∗ γai(Y
′, Y,3 − r,Z))} pi {ψ}

we can deduce that pi, σ′ /↝∗ OwnError, pi, σ′ /↝∗ ProtoError, and if
pi, σ

′ ↝∗ skip, σ′′, then σ′′, i ⊧ ψ. Hence, p, σ /↝∗ OwnError, p, σ /↝∗

ProtoError, and if p, σ ↝∗ skip, σ′′, then σ′′, i ⊧ ψ.

• EC: This rule is sound by a straightforward generalisation of the previous
argument to multiple endpoints.

117

6.4. Properties of proved programs

• S: Straightforward.

• P: Straightforward from Lemma 6.6.

• C, S, L: Straightforward.

• F: Recall that for all program p, p ∼ p ∥ skip (Lemma 2.2). This is also true
in the open semantics: p, σ ↝∗ skip, σ′ if and only if p ∥ skip, σ ↝∗ skip, σ′,
and p, σ ↝∗ error if and only if p ∥ skip, σ ↝∗ error. By applying the parallel
decomposition lemma to p ∥ skip, one obtains the soundness of the F rule.

• W, C, D, E: Straightforward.

• R: We can prove by structural induction on the formulas that for all σ̇, i and
φ, and for all variables x and y, σ̇, i ⊧ φ if and only if σ̇[x ↔ y], i ⊧ φ[x ↔ y].
It can also be proved by a straightforward structural induction on the program that
for all p, p, σ ↝∗ error if and only if p[x ↔ y], σ[x ↔ y] ↝∗ error and that
p, σ ↝∗ σ′ if and only if p[x ↔ y], σ[x ↔ y] ↝∗ σ′[x ↔ y]. These facts entail
the soundness of the R rule.

6.4 Properties of proved programs

This section is dedicated to the consequences of the soundness theorem on proved programs:
we show that proved programs whose contracts are fault-free enjoy “runtime safety” (Theo-
rem 6.2), that is they do not reduce into any error in the closed semantics, and that programs
proved under an admissible footprint context and with leak-free contracts enjoy leak free-
dom (Theorem 6.3). Let us begin by defining how to obtain a closed state from an open
one.

6.4.1 From open states to closed states

To transform an open state into a closed one, one first needs to transform its open buffers
into closed ones. Given an open buffer α = (a1, v1, k̇1)⋯(an, vn, k̇n), we write η(α) for
its canonical projection onto a closed buffer in (MsgId ×Val)∗:

η(α) ≜ (a1, v1)⋯(an, vn) .

This notion is easily extended to project an open endpoint heap k onto a closed one η(k)
(with the obvious lifting of η), and open states onto closed ones (overloading η once more):

η ∶ State→ State

((s, h, k̇), k)↦ (s, h, η(k))

This projection is unfortunately too coarse for our needs, as much of the state may be
buried inside the open buffers. Instead, we define the closed state close(σ) corresponding
to σ by the projection above applied to the flattening of σ.

118

Chapter 6. Open Behaviours and Soundness

Definition 6.9 (Closed state of an open state) The closed state close(σ) of an opened
state σ = (σ̇, k) such that flat(σ) = (sf , hf , k̇f) is defined as

close(σ) ≜ (sf , hf , η(k)) .

The closed state associated to a well-formed open state is also well-formed.

Lemma 6.8 For all σ ∈ Statewf , close(σ) is well-formed as a closed state.
Proof The constraint (Channel) follows from the (OChannel) condition on σ, and (Ir-
reflexive), (Involutive) and (Injective) from the well-formedness of the local part of flat(σ).

◻

6.4.2 Runtime validity

Let us show that programs proved under fault-free contracts do not reduce into an error in
the closed semantics. More precisely, let us show that such programs are runtime valid.

Definition 6.10 (Runtime validity) We say that a triple {φ} p {ψ} is runtime valid and
write⊫Γ {φ} p {ψ} if for all i and σ, there exists σ such that σ, i ⊧ φ, close(σ) = σ and

• p, σ /⇒∗ OwnError and

• p, σ /⇒∗MsgError and

• If p, σ⇒∗ skip, σ′ then there exists σ′ such that σ′, i ⊧ ψ and close(σ′) = σ′.

To show that programs proved under fault-free contracts enjoy the above property, we
will show that valid programs (in the sense of the open semantics, hence of Definition 6.8)
are runtime valid when the contracts involved are fault-free. More precisely, we say that
{φ} p {ψ} is valid under fault-free contracts if the contracts appearing in φ, ψ and p are
all fault-free.

Lemma 6.9 If ⊧Γ {φ} p {ψ} under fault-free contracts then⊫Γ {φ} p {ψ}.

If we manage to establish such a connection, then the result we seek will follow immedi-
ately from the soundness result of the previous section. The triple {φ} p {ψ} is provable
with fault-free contracts if one of its proofs mentions only fault-free contracts (including
the ones decorating p).

Theorem 6.2 If ⊢Γ {φ} p {ψ} with fault-free contracts then⊫Γ {φ} p {ψ}.

Proved programs are race free Let us begin by proving that a valid program is race
free, that is it does not reduce into OwnError in the closed semantics. In particular, we
must prove that a race of p1 ∥ p2 on close(σ) for the closed notion of race entails a race of
the same program on σ for the open notion of race.

119

6.4. Properties of proved programs

Lemma 6.10 For all well-formed open state σ, if close(σ) = σ and p, close(σ) ⇒
OwnError, then p, σ →OwnError.
Proof Let σ = ((s, h, k̇), k) and σ = close(σ) = (sc, hc, kc). We proceed by structural
induction on p.

For all atomic commands, the lemma follows straightforwardly, either because the open
semantics exhibits an extra faulting condition, or from the fact that dom(s) ⊆ dom(sc)
and dom(h) ⊆ dom(hc).

The result is also straightforward to prove for all of the programming constructs reduc-
tions, except for the case where p exhibits a race.

Suppose now that p = p1∥p2 and thatnorace(p1, p2, σ) does not hold, that is iw(p1, σ)∩
ia(p2, σ) ≠ ∅ or iw(p2, σ) ∩ ia(p1, σ) ≠ ∅. We need to show that, given any splitting
σ1 ● σ2 of σ, either p1, σ1 →OwnError or p2, σ2 →OwnError.

Observe that in order for a program p not to reduce into an error in the open semantics,
the local state must contain in its domain all the variables and locations that it immediately
reads or writes to, that is the domains of the stack and heaps must contain ia(p, σ). Thus,
the fact that these sets are not disjoint for p1 and p2 implies that there is no way to split σ
into two disjoint substates over which p1 and p2 would not fault. Indeed, in order for p1 and
p2 not to fault respectively from σ1 and σ2, the domains of the stacks or the heaps of σ1 and
σ2 must overlap. Hence, norace(p1, p2, σ) does not hold and p1∥p2, σ →OwnError. ◻

Proved programs with fault-free contracts are message fault-free We now turn
to the second point of the runtime validity property that we wish to establish: we show
that valid programs with fault-free contracts do not reduce into MsgError in the closed
semantics. This is done in two steps: we first show that valid programs (in the sense of the
open semantics, that is programs which do not reduce into an ownership error or a protocol
error) with fault-free contracts do not fault on message receptions in the open semantics,
and then that message reception errors in the closed semantics correspond to errors in the
open one. Put together, these two facts show that valid programs with fault-free contracts
have no unexpected receptions in the closed semantics.

Lemma 6.11 (Fault correspondence) Let σ be a well-formed state with respect to Γ. If
p, σ /→ OwnError, p, σ /→ ProtoError and p, σ → MsgError then there is ε
such that contract(σ, ε) is defined and cconf (σ, ε) contains an unspecified reception
configuration for contract(σ, ε).
Proof Assume the hypotheses. Since p, σ → MsgError, there is a guarded external
choice for which an unexpected message is in one of the considered buffers (say in the
buffer of ε). Since p, σ /→ OwnError, ε is in the domain of the local part of σ, hence
contract(σ, ε) and cconf (σ, ε) are defined. Moreover, since p, σ /→ ProtoError, the
messages expected by the guarded external choice composition match exactly the ones of
contract(σ, ε). Thus, the unexpected message is also unexpected in any configuration of
cconf (σ, ε) with respect to contract(σ, ε), hence cconf (σ, ε) contains an unspecified
reception configuration for contract(σ, ε). ◻

In particular, if a program p reduces to MsgError from a ceremonious state σ, but not
to OwnError or ProtoError, then either p is decorated by a faulty contract (one that

120

Chapter 6. Open Behaviours and Soundness

is not fault-free), or σ contains one. Indeed, the contract configurations of channels are all
reachable in σ and in the states resulting from the execution of p on σ, hence one of the
contracts can reach an unspecified reception configuration.

Lemma 6.12 For all well-formed open state σ, if p, close(σ)⇒MsgError then either
p, σ →MsgError or p, σ →OwnError.
Proof Straightforward. ◻

Proved programs follow their specifications Finally, let us show that the last part of
the runtime validity definition holds for valid programs.

Lemma 6.13 For all well-formed open state σ, if p, σ ⇒∗ p′, σ′ then either p, σ →∗
error with error ∈ {LeakError,OwnError,ProtoError} or there exists σ′ ∈
StatewfΓ such that close(σ′) = σ′ and p, σ →∗ p′, σ′.
Proof We proceed by case analysis on p. Let σ = (σ̇, k), flat(σ) = σ̇f , σ = (sc, hc, k)
and σ′ = (s′c, h′c, k′). Suppose that p, σ ⇒∗ p′, σ′ and p, σ /→∗ error. We have to show
that there exists σ′ such that close(σ′) = σ′ and p, σ →∗ p′, σ′.

• stack and heap commands: straightforward. In the case of new, observe that we can
pick the same location as in σ′ because dom(hf) = dom(hc).

• open: straightforward.

• close: the flattening of the resulting state flat(σ′) is equal to flat(σ) where the
endpoints have been deallocated from the endpoint heaps. From this observation, it
follows that close(σ′) = σ′.

• send: If p, σ →∗ p′, σ′ then it is easy to see that, since in the reduction rule σ̇a
is moved from the local portion of the state to the receiving queue of the peer ε′

of the origin endpoint ε, σ̇′f = σ̇f (using similar notations for σ′ as for σ). More-
over, if a is the message identifier and v its value, then k′(ε) = k(ε) and k′(ε′) =
k(ε′) ⋅ (a, v, σ̇a), hence η(k′) = [η(k) ∣ buffer(ε′)←η(k(ε′)) ⋅ (a, v)] = [k ∣
buffer(ε′)←buffer(k, ε′) ⋅ (a, v)], which shows that close(σ′) = σ′.

• receive: If p, σ →∗ p′, σ′ then it is easy to see that, since in the reduction rule
σ̇a is moved from the receiving queue of the endpoint to the local portion of the
state, σ̇f and σ̇′f only differ in the value of x in the stack, which now contains v.
Moreover, if ε is the receiving endpoint, a the message identifier and v its value and
η(k(ε)) = (ai, v) ⋅ α = buffer(k, ε), then η(k′(ε)) = α = buffer(k′, ε), hence
close(σ′) = σ′.

• The other programming constructs are straightforward cases. ◻

By putting the three lemmas above together, we get a proof of Lemma 6.9, hence of
Theorem 6.2.

121

6.4. Properties of proved programs

6.4.3 Owned portion of a state

Our next property of interest is leak freedom. However, to define what constitutes a leak in
the open semantics, we first neeed to introduce the notion of the (reachable) owned portion,
or reachable local state, of a well-formed open stateσ = (σ̇, k). The owned portion of a state
σ corresponds to every piece of state that can be reached in σ by retrieving the footprints
of the messages in the queues of the endpoints present in σ̇, adding them to the local state,
and then repeating the process until a fixpoint is reached.1 The fixpoint is reached when the
queues accessible from the last local state all have empty footprints.

In the definition below, emp(k) sets the footprints of the buffers of k to u̇; it is the lifting
to open endpoint heaps of the function

MsgId ×Val × ˙State→MsgId ×Val × ˙State

(a, v, σ̇)↦ (a, v, u̇)

In particular, flat(emp(k)) = u̇ for all k.

Definition 6.11 (Owned portion of a state) Let σ = ((s, h, k̇), k) be a well-formed open
state. The reachable owned portion (or simply the owned portion) owned(σ) of the state
σ is defined inductively by:

• if flat(k ⇂ dom(k̇)) = u̇ then owned(σ) ≜ (s, h, k̇);

• otherwise, let σ̇k = flat(k⇂dom(k̇)) and k′ = emp(k⇂dom(k̇))⊎k⇂(dom(k)∖
dom(k̇)). Then owned(σ) ≜ owned((s, h, k̇) ● σ̇k, k′).

This definition is well-founded since the number of buffers with non-empty footprints
decreases strictly at each step. The resulting session state is well-formed.

Reachable owned states allow us to circumscribe the part of the state that the program
owns, either directly (in its local state), or virtually, because the corresponding locations
can become accessible after a certain number of receives.

Flattening gives an over-approximation of the owned portion of a state.

Lemma 6.14 For all open well-formed state σ, if flat(σ) = (σ̇f , kf), then

owned(σ) ⪯ σ̇f .
Proof The proof is by induction on the number of steps in the computation of owned(σ).

In the base case, we have owned((σ̇, k)) = σ̇ ⪯ σ̇f . Suppose that the lemma is true
for states whose owned portion is computed in up to n steps. Let σ = (σ̇, k) be a state
whose owned portion can be computed in n + 1 steps, and let σ̇ = (s, h, k̇) and σ̇k =
flat(k ⇂ dom(k̇)) and k′ = emp(k ⇂ dom(k̇)) ⊎ k ⇂ (dom(k) ∖ dom(k̇)) as in the

1Gotsman et al. use a similar notion that they call “closure” to get around the issue of cycles of ownership
leaks. [GBC+07]

122

Chapter 6. Open Behaviours and Soundness

definition. Let us moreover write π1((σ̇, k)) for the local part σ̇ of an open state (σ̇, k).
We have:

owned(σ) = owned((σ̇ ● σ̇k, k′)) (by definition)
⪯ π1(flat((σ̇ ● σ̇k, k′))) (induction hypothesis)
= π1(flat((σ̇, k))) (by definition of σ̇k and k′)
= π1(flat(σ))

This concludes the proof. ◻
The other inclusion does not always hold: some of the queues may be unreachable from

the local portion of an open state. Let us call the difference between flat(σ) and owned(σ)
the unreachable portion of σ. This unreachable part may come from two sources:

• either because some endpoints of the open endpoint belong to the environment (in the
sense that, if owned(σ) = (so, ho, k̇o), they are not in the domain of the endpoint
heap k̇o). In this case, these endpoints and every footprint of every message appearing
in their buffers will appear in flat(σ) but not in owned(σ);

• or because some endpoints form a “cycle of ownership” as described in the previous
chapter (page 94); this is the case we want to eliminate.

6.4.4 Leak freedom

Let us study more precisely the formation and evolution of the unreachable portion of an
open state σ (the difference between flat(σ) and owned(σ)) over the execution of a pro-
gram, which we mentioned above, as it may be a symptom of a leak.

Complete states We call a state complete if the domains of its open endpoint heap and
its owned endpoint heap coincide. In other words, the environment controls no endpoint
whose peer is owned by the state: the ownership of both endpoints of every channel present
in this state can be retrieved by performing enough receives.

Definition 6.12 (Complete state) An open state σ = (σ̇, k) ∈ StatewfΓ such that
owned(σ) = (so, ho, k̇o) is called complete if dom(k̇o) = dom(k).

In particular, if σ ⊧ emp and σ is complete then σ = (u̇,∅) and close(σ) = u (where u
is the empty closed state (∅,∅,∅)). Complete states have an empty unreachable portion:
their flattening coincides with their owned portion.

Lemma 6.15 If σ = (σ̇, k) is complete then flat(σ) = owned(σ).
Proof Let σ̇ = (s, h, k̇). The proof is done by induction on the size of dom(k)∖dom(k̇).
If it is 0 then owned(σ) = σ̇ and k = emp(k), thus flat(σ) = σ̇ = (owned(σ), emp(k)).

If dom(k)∖dom(k̇) = E ≠ ∅, let σ̇k = flat(k⇂dom(k̇)) and k′ = emp(k⇂dom(k̇))⊎
k ⇂ (dom(k) ∖ dom(k̇)). We have owned(σ) ≜ owned((s, h, k̇) ● σ̇k, k′) by defini-
tion. Suppose that the lemma holds for all strict subsets of E. In particular, it is true for

123

6.4. Properties of proved programs

owned((s, h, k̇) ● σ̇k, k′): either σ̇k contains some endpoints and the induction hypothe-
sis applies, or it does not and then dom(k̇) = dom(k) which contradicts E ≠ ∅. Thus,
flat(σ) = owned((s, h, k̇) ● σ̇k, k′) = owned(σ). ◻

Leak freedom for complete programs If the footprint context is admissible and the
contracts are all leak-free, completeness of states is preserved by reduction. This is not
the case if Γ is not admissible or if the contracts are not leak-free. In the first case, cycles
of ownership may render unreachable the corresponding endpoints and the footprints con-
tained in their queues. In the second case, closing a channel may leak the footprints of the
messages that were left in its buffers and not consumed. This is captured by the following
definition and theorem.

Definition 6.13 (Leak-free program) A program p is leak free from a complete state σ if

• p, σ /→∗ LeakError and

• if p, σ →∗ p′, σ′ then σ′ is complete.

Theorem 6.3 If Γ is admissible and ⊧Γ {φ} p {ψ} under leak-free contracts, then p is
leak-free from any complete state σ such that σ ⊧ φ.

In particular, if Γ is admissible and ⊢Γ {emp} p {emp} under leak-free contracts, then
using the above theorem and Lemma 6.13 one can show that

p, u⇒∗ skip, σ′ implies σ′ = u .

Note that Theorem 6.3 is true of “complete” programs which execute from complete
states. One would need another theorem for “open” programs, for which this is not necessar-
ily the case, for instance by keeping track of the difference between flat(σ) and owned(σ).
This is left to future work.

Let us decompose the proof of Theorem 6.3 into two lemmas, corresponding to the two
conditions that characterise leak-free programs.

Lemma 6.16 (Leak correspondence) Let σ = (σ̇, k) be a ceremonious state well-formed
with respect to Γ and containing only leak-free contracts, and p a program decorated only
with leak-free contracts such that p /→∗ ProtoError. Then p, (σ̇, k) /→ LeakError.
Proof Assume the hypotheses of the lemma and suppose that p, (σ̇, k) → LeakError
by the leaking reduction rule of close for the channel (ε, ε′). Because of the premises of
this reduction rule, ε, ε′ ∈ dom(k̇) (where σ̇ = (s, h, k̇)) and there are a final control state
qf and words α and α′ such that cconf (σ, (ε, ε′)) = {⟨qf , qf , α,α′⟩} and either α ≠ ␣ or
α′ ≠ ␣. Thus, ⟨qf , qf , α,α′⟩ is not a stable configuration, which contradicts the fact that
contract(σ, (ε, ε′)) is leak-free. ◻

Lemma 6.17 (Completeness preservation) Let σ ∈ StatecttΓ and suppose that all the con-
tracts appearing in p and σ are leak-free and that Γ is admissible. If σ is complete, then
for all p′ and σ′ such that

p, σ → p′, σ′

the open state σ′ is complete.

124

Chapter 6. Open Behaviours and Soundness

Proof The proof is done by case analysis on the reduction rule. The case of close is
proved with the help of Lemma 6.16, and the case of send by the fact that Γ is admissible.

Let us detail the second case. Let σ = ((s, h, k̇), k) and σ′ = ((s′, h′, k̇′), k′) =
((s, h, [k̇ ∣ control(ε)←q′]) − σ̇a, [k ∣ ε′ ∶ k(ε′) ⋅ (a, v, σ̇a)]). Assume that σ′ is not
complete. The difference between dom(k̇′) and dom(k̇) can only come from endpoints
in σ̇a, which means that σ̇a /⪯ owned(σ′). By definition of owned , one can deduce that
ε′ ∉ dom(k̇′), otherwise the contents of its buffer, in particular σ̇a, would also appear in
owned(σ′). Let σ̇a = (sa, ha, k̇a) and σ̇cycle = (sc, hc, k̇c) = (s′f , h

′
f , k̇

′
f) − owned(σ′)

where flat(σ′) = (sf , hf , k̇f). We have σ̇a ⪯ σ̇cycle .
This shows that either ε′ appears in dom(k̇a) or that there is ε′′ such that ε′ is owned

by the buffer of ε′′ and ε′′ ∈ dom(k̇a), or more generally that there are ε1, . . . , εn such
that εi ∈ dom(k̇c) for all i and σ̇cycle = flat(k′(ε1)) ● ⋯ ● flat(k′(εn)). Thus, σ̇cycle ⊧
⊛i∈I γbi(ε′i, εi, ri, vi) where I the set of messages in the buffers of the various εi and
k̇c(εi) = (ε′i,−,3 − ri,−) for all i ∈ {1, . . . , n}. This contradicts the fact that Γ is admis-
sible by Definition 5.1. ◻

6.4.5 Boundedness of communications and deadlock-freedom

Lemmas 6.11 and 6.16 connect the fault and leak-freedom properties of contracts to equiv-
alent properties on programs. One could show, similarly to the proof of these lemmas, that
a program with n-bounded contracts only needs communication buffers of size n.

Unfortunately, a program with deadlock-free contracts is not necessarily deadlock-free,
even when the program only manipulates one channel. For instance, using the deadlock-free

contract ..q0.. q1. !a one can prove the following deadlocking program:

(e,f)=open(C)
receive(a,f);
send(a,e);
close(e,f);

This is because the logical rules do not take account causality between different end-
points, but only causality within the same endpoint. Similarly, contracts fail to account for
interactions between different channels, which can also cause deadlocks, as in the program
below, whose channels abide by the same deadlock-free contract as above.
⎧⎪⎪⎨⎪⎪⎩

receive(a,f1);
send(a,e2);

⎫⎪⎪⎬⎪⎪⎭
∥
⎧⎪⎪⎨⎪⎪⎩

receive(a,f2);
send(a,e1);

⎫⎪⎪⎬⎪⎪⎭

125

C

Heap-Hop

This chapter describes the tool that has been developed during the course of the thesis,
named Heap-Hop. It takes programs annotated with logical formulas and contracts as input,
and outputs either “Valid.” if all the functions have been successfully proved to comply
with their specifications and the contracts are leak and fault free, or the part of the proof
that has failed. A failed proof means that the specifications given by the user do not hold,
hence one cannot know if the program has a genuine bug or if the specifications could be
refined to a point where they are true. A proved program on the other hand is guaranteed to
have all the good properties corresponding to the ones described in the last section of the
previous chapter.

We first present Heap-Hop’s general modus operandi and then its public distribution,
which includes the case studies Heap-Hop has been applied to.

7.1 Input

Heap-Hop takes as input programs annotated with pre and post-conditions for functions,
loop invariants, message footprints and contracts. More precisely, Heap-Hop’s inputs are
plain text files that can contain declarations for message identifiers, contracts and functions.
The annotations are formulas of a fragment of our logic placed between brackets and written
in plain text.

The contents of such a file containing the declarations necessary to prove the cell passing
example of Figures 1.6 and 5.2 is reproduced Figure 7.1. This file is part of the Heap-Hop
distribution (see Section 7.4) as examples/cell.hop. The notations will be explained
shortly.

7.1.1 Programming language

The programming language used by Heap-Hop is a more practical version of the HMP
language named H. Its syntax is shown in Figure 7.2.

H supports records and field accesses, “if-then-else,” “while” and “switch receive”
constructs, function calls and messages with multiple parameters. Moreover, although this

127

7.1. Input

message cell [val|->]

contract Cell {
initial state start { !cell -> end; }
final state end { }

}

put_get() [emp] {
local e,f,x;

x = new();
(e,f) = open(Cell);

put(e,x) || get(f);

close(e,f);
} [emp]

put(e,x) [e|-> Cell{start} * x|->] {
send(cell,e,x);

} [e|->Cell{start}]

get(f) [f|-> ~Cell{start},pr:_ee] {
local y;

y = receive(cell,f);
dispose(y);

} [f|-> ~Cell{start},pr:_ee]

Figure 7.1: Heap-Hop input file corresponding to the cell transfer program.

does not appear in the syntax, receive commands can be used as syntactic sugar for single-
branch switch receives. The parallel composition is syntactically restricted to a parallel call
of two functions. Because function declarations are annotated with pre and post-conditions,
this syntactic restriction allows Heap-Hop to know what the splitting of resources between
the two sides of a given parallel composition will be, instead of having to enumerate and
try them all.

At the beginning of the file are message tags declarations. When declaring a new message
tag with the message a [φ] statement, the user provides the number of parameters that
messages with this tag will have, called the arity of the tag or the arity of the message. The
arity of tag a is written ar(a), and the syntax of a message declaration that also specifies
an arity n is

message a(n) [φ]

A tag z with an arity of 0 has no parameters, is sent using send(z,E) and is received in
branches of the form receive(z,E): p. Heap-Hop checks that arities are used consis-
tently by the program. If some arities are not explicitly declared in the file, Heap-Hop infers

128

Chapter 7. Heap-Hop

E ::= expressions
x variable
∣ v value
∣ E +E ∣ E xorE arithmetic operations

B ::= E = E ∣ E ≠ E boolean expressions

c ::= commands
x = E variable assignment
∣ x = new() memory allocation
∣ x = E →t field lookup
∣ E →t = E field mutation
∣ dispose(E) memory deallocation
∣ (e,f) = open(C) channel creation
∣ close(E,E) channel destruction
∣ send(a,E,E1,. . .,Ear(a)) send

r ::= (x1, . . . , xar(a)) = receive(a,E): p receive branch

p ::= programs
c atomic command
∣ switch receive {r1 . . . rn} switch receive
∣ p; p sequential composition
∣ if (B) p else p conditional
∣ while (B) p loop
∣ f(x⃗; E⃗) function call
∣ f(x⃗; E⃗) ∥ f(x⃗; E⃗) parallel composition

Figure 7.2: Syntax of the H programming language.

them from the program.

7.1.2 Contracts

The protocols of a program are described using contracts. In the future, Heap-Hop may sup-
port more general dialogue systems to specify protocols. Contracts are required to have at
least one initial state, and need not be deterministic, positional or synchronising. However,
these three properties are checked by Heap-Hop, which will issue appropriate warnings if
they are not satisfied.

From a syntactic point of view, each state of a contract is introduced separately with
the state keyword, which may be preceded by initial or final. A state declaration

129

7.1. Input

E ::= logical expressions
_x logical variable
∣ x program variable
∣ n integer
∣ E +E ∣ E xorE arithmetic operations
∣ {q1, . . . , qn} set of control states

ρ ::= t1 ∶ E1, . . . , tn ∶ En record expressions

φ ::= pure formulas
E = E boolean expression
∣ true true
∣ false false
∣ emp empty heap
∣ E ↦ ρ allocated location
∣ list(E1,E2) linked list segment
∣ tree(E) binary tree
∣ φ ∗ φ separating conjunction
∣ if B then φ else ψ precise disjunction

Figure 7.3: Syntax of Heap-Hop assertions.

consists of a set of transitions starting from this state. Similarly to Singularity, one can
declare a sequence of transitions in one go, and Heap-Hop will create appropriately named
implicit states. For instance, the contract declared with
contract CellAck {

initial state start { !cell -> ?ack -> end; }
final state end { }

}

will be understood by Heap-Hop as
..start.. start_0. end. !cell. ?ack

.

7.1.3 Logical fragment

The formulas manipulated by Heap-Hop are all within a decidable fragment of separation
logic. This fragment is described Figure 7.3. It is essentially the one used by Small-
foot [BCO05a] extended with assertions for endpoints.

This logic differs from the one defined in Chapter 5 on several points. It is a restricted
version of it in most respects but also goes beyond it in some others. Below is a list of the
discrepancies between the theory and the practise of our logic at the assertion level:

• non-deterministic contracts are supported, hence the logic keeps track of sets of con-
trol states instead of just one control state, as mentioned in Section 5.3.1;

130

Chapter 7. Heap-Hop

• the tool logic does not treat variables as resources, hence the absence of own state-
ments;

• the syntax of the logic is restricted so that implication between two formulas of this
fragment is decidable (see Section 7.2), which is not the case for the logic of Chap-
ter 5. Moreover, disjunctions are restricted to case analyses so that formulas of this
fragment are always precise;

• the contents of cells and endpoints is addressed through a record notation;

• endpoints do not use a separate predicate to distinguish them from regular cells. In-
stead, a special read-only field ep (set to 1 for endpoints and 0 for regular cells) is used
by Heap-Hop to distinguish between the two possible types. Endpoint-related infor-
mation (the peer, contract, role and set of control states of an endpoint) is recorded in
the fields pr, cid, rl and st corresponding respectively to the peer, contract iden-
tifier, role and control state of an endpoint. These fields cannot be modified directly
by programs, only via the communication primitives of H.

7.2 Internals

7.2.1 Verification condition

The first phase of the processing of functions consists in chopping each of them, together
with their specifications, into several verification conditions. Following the terminology of
Berdine et al. in their paper describing Smallfoot [BCO05a], a verification condition is a
triple [φ] si [ψ] where si is a symbolic instruction, that is a loop-free sequential program
described by the following grammar:

si ::= c′ ∣ [φ] jsrx⃗ [ψ] ∣ si ; si ∣ if B then si else si

where c′ is the following set of atomic commands:

c′ ::= assign(x,E) ∣ new(x) ∣ lookup(x,E, t) ∣ mutate(E, t,E) ∣ free(E)
∣ open(e, f, C) ∣ close(E,E) ∣ send(a,E,L)
∣ extchoice(LM) ∣ receive(`, a,E)

In the above grammar, ` is used to denote a list of variables, L a list of expressions, and
LM a list of pairs (E,M) where E is an expression andM is itself a list of message
identifiers (hence if Expr is the set of expressions LM ∈ (Expr × (MsgId∗))∗). Because
of the initial parsing phase all commands are now presented in terms of constructors instead
of their syntax-friendly versions. For instance, x = new() is translated into new(x).

Function calls and parallel compositions are translated into jsr instructions, inherited
from Smallfoot and described as such by their authors [BCO05a]:

Semantically, [φ] jsrx⃗ [ψ] is a “generic command” […]. It is the greatest
relation satisfying the pre- and post-condition, and subject to the constraint
that only the variables in x⃗ are modified.

131

7.2. Internals

Switch receives are translated into guarded non-deterministic choices between each of
their branches. The guard is an extchoice command that is used during symbolic execution
to check that each endpoint is ready to receive all the messages specified by the contract
from the endpoints’ current states.

To see how the translation into verification conditions operates, and in particular the role
of jsr instructions, let us consider the following example taken from the Heap-Hop distri-
bution (examples/send_list.hop) and corresponding to the receiving end of the list-
transfer program presented Figure 1.9 (page 24):
get(f) [f|->~C{transfer}] {

local x, e;

e = NULL;
while(e == NULL) [if e==NULL

then f|->~C{transfer}
else e|->C{end} * f|->~C{end},pr:e] {

switch receive {
x = receive(cell,f): { dispose(x); send(ack,f); }
e = receive(fin,f): {}
}

}
close(e,f);

} [emp]

This program is transformed into the following two verification conditions (which can be
observed by passing the -verbose option to Heap-Hop):

[f↦ ∼C{transfer}]
assign(e,0);
[if (0 = e) then f↦ ∼C{transfer} else f↦ ∼C{end} ∗ e↦ C{end}]
jsr{e,x}
[(if (0 = e) then f↦ ∼C{transfer} else f↦ ∼C{end} ∗ e↦ C{end}) ∗ 0 ≠ e]
close(e, f);
[emp]

and

[(if (0 = e) then f↦ ∼C{transfer} else f↦ ∼C{end} ∗ e↦ C{end}) ∗ 0 = e]
extchoice([(f, [cell,fin])]);
if nondet0 ≠ 42 then

receive([x], f, cell);
dispose(x);
send(f, ack, []);
else receive([e], f,fin);
[if (0 = e) then f↦ ∼C{transfer} else f↦ ∼C{end} ∗ e↦ C{end}]

In this example, the while loop gives rise to two verification conditions: one in which it
is bypassed and replaced by a generic jsr instruction that sums up its effect, and one that

132

Chapter 7. Heap-Hop

checks that the body of the loop preserves its invariant. The switch receive construct is
replaced by a conditional that simulates a non-deterministic choice between its branches (a
fresh variable nondet0 is created to form the test of the conditional). It is guarded by an
extchoice command as described above, which in this case states that f is ready to receive
either cell or fin.

We will not give a formal description of the translation, as it bears no other important
details. It should be straightforward to extrapolate from the explanation above. One can
show that the verification conditions associated to an annotated function are provable Hoare
triples if and only if the specification of the function is also provable.

Because variables are treated as in conventional Hoare logic, Heap-Hop (like Smallfoot)
has to ensure the absence of race conditions on variables without being able to rely on proof
rules to do so. This is achieved by tracking which variable is read or written by each function
and ensuring that no pair of functions that both write to the same global variable are ever put
in parallel. This syntactic check is performed during the verification condition generation
phase.

7.2.2 Symbolic execution

The second step of the automatic verification consist in symbolically executing the body
of the verification conditions. Starting from the first command, the precondition is trans-
formed according to systematic rules that mimic the effect the command has on the state at
the formula level. The new formula is then used as the precondition of the remaining pro-
gram. Thanks to the fact that verification condition bodies are sequential and loop-free, this
process can be repeated until no command remains. The resulting formula is then checked
against the post-condition in the last step of the verification (described below). More pre-
cisely, a verification condition [φ] p [ψ] is transformed into several entailment checks
φ′ ⇒ ψ that hold only if the verification condition is a provable Hoare triple.

Symbolic execution follows a finite set of rules that may be seen as rewrite rules between
verification conditions, one for each possible command at the head of the current program,
and additional ones to rewrite the current formula into a more canonical form in-between
the application of rules for commands. For instance, the rule for memory look-up can be
presented as the following inference rule:

{(φ ∗E|->ρ)[x←x′] ∗ x = E2[x←x′]} p {φ′}
{φ ∗E|->f:E′, ρ} x = E->f {φ′}

x′fresh

The interested reader may refer to the article of Berdine et al. [BCO05b] for details on the
rest of the rules (in a setting without endpoints) and how they are applied. We will soon
show how symbolic execution is performed in our example, but let us first introduce the
frame inference problem.

Frame inference problem Along the way other entailments have to be checked. In fact,
each jsr call requires an instance of the frame inference problem to be solved, as described
below.

133

7.2. Internals

Definition 7.1 (Frame inference problem) The frame inference problem consists in find-
ing, given two formulas φ and φ′, a third formula ψ such that the following implication is
valid:

φ⇒ (φ′ ∗ ψ)

The name “frame inference” comes from its relation with the F rule: if one knows
that {φ1} p {φ2} is provable and is given φ as a precondition, one has to find a “frame”
ψ such that φ ⇒ (φ1 ∗ ψ) in order to apply the frame rule in the following way (after a
weakening step):

φ⇒ (φ1 ∗ ψ) {φ1} p {φ2}
{φ} p {φ2 ∗ ψ}

W + F

When the symbolic execution reaches a [φ1] jsr` [φ2] instruction with φ as current
formula, it tries and solve the following instance of the frame inference problem: is there a
formula ψ such that

φ⇒ (φ1 ∗ ψ) ?

If there is, the symbolic execution resumes with the rest of the program and φ2∗ψ as current
formula.

Berdine et al. explain how the frame inference problem is solved in Smallfoot in their pa-
per on symbolic execution [BCO05b]. Adding endpoints to the heap model do not alter their
algorithm in any but minor details. As the technique relies mainly on the way entailments
are checked, we delay the discussion to after the exposition of the entailment-checking al-
gorithm, in Section 7.2.3. For now, let us assume that such an algorithm is given.

Symbolic execution on an example Let us provide an informal description of the sym-
bolic execution procedure by applying it to the second verification condition obtained ear-
lier. The first command is extchoice([(f, [cell,fin])]). To expose the contract associated
to f, the precondition is first rewritten by substituting e by 0 and removing the correspond-
ing equality, and then by performing a case-split on the value of the test 0 = 0. As one of
the formulas obtained presents a contradiction (0 ≠ 0) it is discarded (more precisely, ver-
ification conditions of the form [false] p [ψ] are always true). The remaining verification
condition has

f↦ ∼C{transfer}

as precondition. As the contract associated to f in the precondition gives only cell and fin
as potential messages in the receive buffer, which matches the list of messages for which
f is ready, the check is successful and the precondition is passed as-is to the conditional
that follows. Each branch of the if-then-else construct is analysed separately. In the first
branch, the receive transforms its precondition by updating the control state of f to the im-
plicit control state transfer_0 and by adding to it the invariant of the message cell (correctly
instantiated). The result is the formula

f↦ ∼C{transfer_0} ∗ x↦ − .

134

Chapter 7. Heap-Hop

The dispose(x) command that follows looks for a cell pointed to by x in its precondition
and simply removes it, which gives

f↦ ∼C{transfer_0} .

Finally, sending ack puts f back in the transfer control state and then tries and find a sub-
formula corresponding to the footprint of ack. In this case, the footprint is emp so the
whole process is trivial; let us detail it anyway. After the control state of the corresponding
endpoint has been updated, the send command is replaced by a jsr call that corresponds
to consuming the message’s footprint, instantiated by the right parameters (something that
could not have been done before this phase, as one needs to retrieve, for instance, the peer
of the sending endpoint, which can only be done by looking at the formula at that point of
the symbolic execution). More precisely, a call send(a,E,E1 ∶∶ ⋯ ∶∶ [En]) starting from
formula φ is replaced with

[γa(E,E′, r,E1, . . . ,En)] jsr∅ [emp] .

where φ ⇒ (E ↦ pr ∶ E′, rl ∶ r ∗ true). In the case at hand, send(ack, f, []) is replaced
with [emp] jsr∅ [emp]. As described earlier, this call results in the entire formula being
framed away (because φ⇒ (emp ∗ φ) for any φ), and the symbolic execution reaches the
end of the branch with this final current formula:

f↦ ∼C{transfer} .

Similarly, the second branch of the conditional produces the formula

f↦ ∼C{end} ∗ e↦ C{end} .

A formal description of the symbolic execution algorithm used by Smallfoot is given in
the paper “Symbolic execution with separation logic” by Berdine et al. [BCO05b]. The
procedure used by Heap-Hop extends it to handle communication commands. For instance,
the effect of a send can be described by the following inference rule:

{φ ∗E ↦ cs:Q′, ctt:C, pr:E′, rl:r, ρ}
[γm(E,E′, r,E1 ∶∶ ⋅ ⋅ ⋅ ∶∶ [En])] jsr∅ [emp]; p
{φ′}

{φ ∗E ↦ cs:Q, ctt:C, pr:E′, rl:r, ρ} send(a,E,E1 ∶∶ ⋅ ⋅ ⋅ ∶∶ [En]); p {φ′}
†succ℘(C, r,Q, !a) = Q′

†

Similarly, the rule for close takes this form:

{φ} p {φ′}
{φ ∗E ↦ cs:Q, ctt:C, pr:E′, r:1, ρ ∗E′ ↦ cs:Q′, ctt:C, pr:E, r:2, ρ}
close(E,E′); p
{φ′}

†Q ∩Q′ ∩ finals(C) ≠ ∅

†

135

7.2. Internals

7.2.3 Entailment checking and frame inference

During the symbolic execution phase, one has to prove several entailments φ ⇒ ψ and
solve frame inference problems. The decision procedure used by Heap-Hop for formulas
follows straightforwardly from the one of Smallfoot, also described in Berdine et al. pa-
per [BCO05b].

Intuitively, in the case of an entailment φ ⇒ ψ, every predicate appearing in the right-
hand side formula has to be matched by the left-hand side formula. If this is the case, it
is removed from both sides and the entailment checking procedure continues with what is
left on both sides. The goal is to reach an entailment of the form (φ′ ∗ emp) ⇒ emp
where φ′ is made solely of a conjunction of equalities between expressions (what Berdine
et al. call pure formulas). In this case, the entailment is true. In fact, the decision procedure
used by Smallfoot and Heap-Hop is complete, as shown by Berdine et al. [BCO05b] with
little adaptation, hence the entailment is false if it cannot be reduced to one of the form
(φ′ ∗ emp)⇒ emp where φ′ is pure.

Frame inference as performed by Smallfoot and Heap-Hop is closely connected to the
procedure we have just described. If we have to find a frame ψ such that φ1 ⇒ (φ2 ∗ ψ),
we try to prove φ1 ⇒ φ2 using the procedure above. If it succeeds, the frame emp suffices.
If it fails however, it will be because of one of the following two situations: either a predicate
of the right-hand side cannot be matched by a portion of the left-hand side formula, even
after normalisation; in this case, Heap-Hop gives up on finding a frame. The second case
is that the procedure reaches an implication φ′ ⇒ emp where φ′ is impure (φ′ /⇒ emp). In
this case, one can show that φ′ is an admissible frame solution: φ1 ⇒ (φ2 ∗ φ′).

7.2.4 Contract verification

Heap-Hop checks sufficient syntactic conditions to ensure that all contracts are fault-free
and leak-free. The conditions are the one dictated by Corollary 3.1 (page 60: contracts
must be deterministic, positional and synchronising). For this purpose, Heap-Hop stores
each contract as an identifier, a set of initial and final states, and a list of states. Each state
contains the list of outgoing transitions from this state.

To check determinism, Heap-Hop searches each of these lists of transitions for duplicate
actions. The fact that a contract is positional is as easy to establish: Heap-Hop makes sure
that each list of outgoing transitions only contains actions in one direction (either only sends
or only receives). Finally, for each final state of the contract, Heap-Hop checks if there is a
cycle consisting of either only sending or only receiving actions from that state (by a naive
reachability analysis from that state). If this is not the case, the contract is synchronising
because all its final states are.

As we have discussed in Chapter 3, and more precisely in Corollary 3.1, contracts that
satisfy all three of these conditions are fault and leak-free. As we have seen in Theorems 6.2
and 6.3 of the previous chapter, programs that can be successfully proved using such con-
tracts are themselves reception error free and will not close channels with undelivered mes-
sages in them. The conformance of the program to the declared contracts is checked at
symbolic execution time using the logical rules described above and derived from those of

136

Chapter 7. Heap-Hop

Chapter 5. Heap-Hop uses the criterion of Lemma 5.3 to check that the footprint context is
admissible, hence that leaks are completely avoided if the contracts are leak-free.

7.3 Output

7.3.1 Properties of the contracts

If a contract fails one of the checks mentioned above, a warning is issued to the user appro-
priately: if a contract is either non-deterministic or non-positional, then Heap-Hop warns
that it cannot prove that programs are either leak-free or fault-free; if a contract is not syn-
chronising, Heap-Hop warns that programs cannot be proved leak free.

The incriminated contract and control states are indicated to the user as part of the warn-
ing. All warnings and errors in Heap-Hop are output using a standard format to indicate
the line number where the abnormality is. For instance, in the case of a non-synchronising
contract, Heap-Hop’s output would be of the following form:

File ”non-synch-contract.hop”, line 13, characters 0-125:
WARNING: contract C is not synchronizing:

there is a send cycle starting at state start
WARNING: program cannot be guaranteed leak free because of contract C

This formatting is recognised by the emacs text editor for instance, which allows the user
to click on the warning to be directed to the relevant file and line.

Moreover, contracts are also output as dot files,1 so that the user can have a graphical
representation of them.

7.3.2 Hoare-triple verification

Once the contracts have been checked, Heap-Hop tries to prove that the specifications of
the functions are true, using the process described in Section 7.2. If it fails to prove that a
certain specification or loop invariant holds, it can be for one of two reasons, which both
result in an error pointing to the offensive line of code being issued:

• either the symbolic execution is stuck at a particular command because the current
precondition does not match the one of the command, which means that the command
cannot safely execute (that is, there is a possible memory fault or race at that program
point);

• or the result of the symbolic execution fails to entail the required post-condition,
which means that the specification or loop invariant given by the user does not hold.

In either case, the error is reported to the user, with the current formula obtained by the
symbolic execution and the location in the program where Heap-Hop was stuck. If extchoice
detects a missing branch in a switch receive, a mere warning is issued given the incomplete-
ness of relying on contracts to detect communication errors. In practise however, only one

1http://www.graphviz.org/Documentation.php

137

http://www.graphviz.org/Documentation.php

7.4. Distribution

of our case studies exposes such a warning despite being correct (one of our solutions to the
load balancing tree disposal problem exposed in Section 7.4.2 below, which can be found
in the file examples/spawning_threads_tree_disposal.hop).

7.4 Distribution

7.4.1 Public distribution

License Heap-Hop is released under the “Q Public License version 1.0” which can be
found on Trolltech’s website.2 In particular, its source code is publicly available and may
be changed by anyone provided that the changes are made distinct from the original source
and are released publicly and under the same license. Heap-Hop inherits this license from
Smallfoot.

Contents of the distribution Heap-Hop’s release contains

• the source code of the tool, written in OC, with a “Makefile” to compile it auto-
matically;

• a battery of examples;

• a succinct user’s manual;

• an emacs major mode to help editing examples and running Heap-Hop on them.

The emacs major mode is an extension to the emacs text editor that includes syntax
highlighting for the H language.

Although still under active development, Heap-Hop is considered as stable by its authors
and a public official version numbered 1.0 has been released. Unstable versions with more
features are also available publicly for testing purposes.

Website Heap-Hop’s official website, at the time of this writing, is located at http:
//www.lsv.ens-cachan.fr/Software/heaph-hop/. This contains the tarball distri-
bution, an online documentation, a summary of the case studies and other resources such
as scientific papers associated to Heap-Hop.

Heap-Hop is also hosted on the bitbucket website 3 to benefit from a dedicated infrastruc-
ture that provides a mailing-list, a bug tracker, and an online Mercurial (a free distributed
source control management tool 4) repository which allows anyone to download the latest
version and submit patches to the code.

2http://doc.trolltech.com/3.0/license.html
3http://bitbucket.org/jvillard/heap-hop/
4http://mercurial.selenic.com/

138

http://www.lsv.ens-cachan.fr/Software/heaph-hop/
http://www.lsv.ens-cachan.fr/Software/heaph-hop/
http://doc.trolltech.com/3.0/license.html
http://bitbucket.org/jvillard/heap-hop/
http://mercurial.selenic.com/

Chapter 7. Heap-Hop

Figures Let us now present some executive-compliant key figures about Heap-Hop’s
code base. All figures include comment lines. Heap-Hop, in its current form, represents
5018 lines of OC code and ships with 1273 lines of original examples. The Smallfoot
code base, while retaining its essence, has undergone much changes: omitting examples,
925 lines were removed and 2316 lines were added (including lines that were modified).

7.4.2 Case studies

Examples presented so far Most of the examples presented in this manuscript (includ-
ing for instance the cell-by-cell list sending program and the modelling of an ATM) are
included in the examples/ subdirectory of the Heap-Hop distribution. Let us present an-
other example that ships with Heap-Hop that introduces what we believe to be an interesting
problem: the load balancing problem for binary trees. This problem is only partially solved
by Heap-Hop.

Load balancing What we call the load-balancing problem for two threads is this: given a
binary tree whose nodes represent some tasks, which we assume to be of equal cost in terms
of computing power, one tries to distribute these tasks to two threads running in parallel,
such that both threads end up treating an approximately equal amount of tasks. The tree is
not supposed to be balanced and its shape is not known in advance, so the algorithm has to
distribute the tasks while exploring the tree. More precisely, the threads have to collaborate
and dynamically balance the load of their tasks.

The solution we propose to this hypothetical problem follows. We suppose that the treat-
ment of each task consists solely of disposing of the corresponding node, but in theory this
could be an arbitrarily complex operation. One of the threads, called the “left thread,” will
dispose of the left children of all of the internal nodes of the tree, and the other thread, the
“right thread,” will dispose of all the right children. Both threads hold one endpoint of a
shared channel.

Initially, if the tree is not empty, the left thread starts with the left subtree (one step down).
If this subtree is not empty, it disposes of its root, sends its right subtree (two steps down)
over the channel, and proceeds with the left subtree. The right thread behaves symmetrically.
If the tree it is working on becomes empty, the thread sends an acknowledgement and waits
for a message. It may either receive a new tree to be disposed or an acknowledgement. The
thread maintains a counter holding the number of tasks that it has sent and that have not yet
been processed and acknowledged by the other thread. When this counter reaches zero, the
other thread is done, hence the communication can be stopped.

The code for the left thread is presented in Figure 7.4. The code for the right thread
is symmetric (it sends the left subtree and keeps the right one when descending into the
current tree). Its annotations have been checked by Heap-Hop, as has been the full program
(included in the Heap-Hop distribution5). The contract C that the program is proved to
follow is the one that allows any sequence of messages work and ack on the channel:

5Since Heap-Hop does not yet support arithmetic, the code in the distribution includes additional variables
and code to handle the values of the counter i by predicate abstraction.

139

7.4. Distribution

message work [tree(val)]
message ack [emp]

dispose_left(e) [e|->C{s},pr:_f] {
local l,r,t,i,is_waiting;

i=1;
is_waiting = 0;
t = 0;
while (i != 0)
[e|->C{s},pr:_f * (if (i == 0)

then emp
else (if (is_waiting == 0)

then tree(t)
else emp))] {

if (is_waiting == 0) {
while (t != NULL) [e|->C{s},pr:_f * tree(t)] {

l = t->l;
r = t->r;
send(work,e,r);
i = i +1;
dispose(t);
t = l;

}
send(ack,e);
is_waiting = 1;

} else switch receive {
t = receive(work,e) : { is_waiting = 0; }
receive(ack,e) : { i = i -1; }

}
}

} [e|->C{s},pr:_f]

Figure 7.4: Left thread for the load-balancing binary tree disposal.

..s..
!ack

.
!work

.
?work

.
?ack

Interesting questions about this piece of code include: whether it terminates, whether it
deadlocks, and whether it is leak-free. However, Heap-Hop cannot establish any of these
properties. It only manages to prove that the program is safe with respect to memory man-
agement.

Although Heap-Hop cannot prove termination, it could prove leak-freedom if contracts
were richer. For instance, one could use arbitrary dialogue machines instead of contracts for
specifying the communication protocols. In this case, the protocol followed by the program

140

Chapter 7. Heap-Hop

can be (much more accurately) described by the following system D:

D ≜

⎛
⎜⎜⎜⎜
⎝

{(a, a)}, ..w.. a.
!work

.
!ack

.
?ack

.

?work

, ..w.. a.
!work

.
!ack

.
?ack

.

?work

⎞
⎟⎟⎟⎟
⎠

Note that both endpoint of the channel follow the same protocol, and not dual ones. In
particular, the communications are not half-duplex. Although this dialogue system is not
leak-free, it is deadlock-free. Using a similar method as with contracts, one could prove that
the load-balancing program obeys this dialogue system, and that as a result the program will
not get stuck waiting for a communication.

Yet, the program is also leak-free, and moving to general dialogue machines alone does
not help in proving this. To achieve this, one would have to augment dialogue systems
with counters. Informally, one would specify the communications using the following ex-
tended dialogue system D′ where transitions can be guarded by testing a counter k or k′,
or incrementing it (with k++) or decrementing it (with k--):

D′ ≜
⎛
⎜⎜⎜
⎝
{(a, a,0,0)}, ..w.. a.

!work
k++

.
!ack

.

?ack
k--

.

?work

, ..w.. a.

!work
k′++

.
!ack

.

?ack
k′--

.

?work

⎞
⎟⎟⎟
⎠

The final state now also specifies that k = k′ = 0. One can extend the definitions of
Chapter 3 and show thatD′ is indeed leak-free: whenever the final configuration (a, a,0,0)
is reached, the buffers are empty. This would show that if the program terminates then the
whole tree has been properly disposed of. If we replace disposal with some other operation
on nodes, this shows that the load-balancing program treats all the nodes. The proof system
would not ensure that it terminates, or that the tasks are balanced between the two threads.

141

Conclusion

Contributions Let us begin this conclusion by a summary of the contributions contained
in this manuscript. Firstly, a formal semantics has been given to a message-passing pro-
gramming language that is heavily inspired by the Sing♯ language of the Singularity project.
This formalisation is an attempt both at giving a sound bedding to the ideas introduced in
Singularity and at studying copyless message passing in all generality. This effort is pursued
on the protocol specifications of Singularity, the contracts, for which we also provide a for-
mal semantics, in terms of the existing model of communicating automata. Various decid-
ability questions are studied, from which one may draw the conclusion that the constrained
syntactic form of contracts gives them no theoretical advantage over the more general class
of half-duplex dialogue systems. Nevertheless, their practical usefulness, as demonstrated
by the Singularity project, promotes them as the language of protocol specifications for our
own logic.

Indeed, we define an original extension of separation logic to copyless message passing
which validates programs with respect to their contracts. To prove its soundness, we define
a second semantics for our programming language where the logical reasoning attached
to copyless message passing is given an operational meaning. This second semantics is
related to the first in a way that is independent of the properties of the program, and lets
us explore the links between a program and the contracts that it abides by: some of the
crucial properties of contracts, good or bad, rub off on programs. Thus, the verification
of a message-passing program amounts to its provability in our proof system as much as it
amounts to verifying its contracts.

Testing and validating our approach was helped by the Heap-Hop tool, developed dur-
ing this thesis, that implements our technique to automatically verify annotated message-
passing programs.

Richer protocol specifications Starting from this work, several directions are amenable
to further research in verifying message-passing programs. First of all, contracts are but one
means of specifying protocols, and several other options could have been considered. As
discussed at the end of the last chapter, one possibility would be to consider more general
dialogue machines extended with counters. We believe that our logic can easily cover such
an extension, as do the semantic models we used. What would become problematic how-

143

Conclusion

ever, and where we believe interesting theoretical challenges lie, is the verification of such
protocols. Indeed, our syntactic restrictions would no longer guarantee the desired proper-
ties on protocols. Furthermore, half-duplex machines with counters do not have many good
decidability properties, as counter machines with at least two counters can simulate Turing
machines. New techniques would thus have to be developed.

Another possible extension to the expressivity of the verification is the addition of pa-
rameters to footprints, in the following sense. Suppose that one wishes to transfer a linked
list over a channel but that, instead of disposing of its nodes one by one as in the example
shown previously, one wishes to reconstruct the list cell by cell. As it is, we could not find a
proof of such a program with our proof system because the footprints of messages have no
means of mentioning the value that will carry the next message, or the value that was carried
by the previous one. One possible solution for this example would be to add a parameterX
to the footprint of the cell message, which becomes allowed to mention bothX and the next
valueX ′ ofX: γcell ≜ emps ∧Val↦X ′ ∧Val =X . The contract remains unchanged, but
if there are other messages between two cell messages, they may carry the previous value of
X onward. For instance, if each cell message is followed by an ack message, the footprint
of the acknowledgement message could be γack ≜ emp∧X ′ =X . The proof system would
be in charge of handling these parameters.

One could also go in another direction and try to find a more general model of concur-
rency or of message passing that would encompass our own. It is a bit disappointing indeed
that abstract separation logic was unable to give a natural meaning to message-passing con-
structs, and one may wish for such an abstract framework that would apply to more models
of concurrency.

Finally, instead of limiting channels and protocols to dialogues, one could imagine mul-
tiparty conversations occurring on channels and specified by multiparty contracts. These
contracts could take the form of arbitrary communicating systems with any number of par-
ticipants for instance. One could follow what has been accomplished by the session types
community in this direction [HYC08].

Progress Studying the relationship between progress properties of a program and the
progress properties that can be established on the protocols it follows could allow one
to prove that a program will never get stuck on a communication. To this end, one may
be able to borrow some ideas from the Chalice tool [LMS10] or from multiparty session
types [BCD+08], both of which can prove progress for programs using multiple communi-
cation channels.

Full-featured programming language Besides augmenting the power of logical speci-
fications, the programming language itself may be extended, which would certainly prompt
the need for extensions in our logic as well. As far as communications are concerned, sev-
eral extensions are conceivable to try and embrace the myriad of existing message-passing
paradigms.6 Let us just mention a few of them. In our current setting, it is possible to spec-

6The MPI library by itself proposes no less than 77 functions (128 in its most recent standardisation) to
configure and perform message passing.

144

Conclusion

ify a certain number of endpoints on which to wait for a new message to arrive. A natural
extension of this would be to provide the ability to wait on a linked list of endpoints. This is
useful for programs that have to manage an unbounded number of channels, for instance a
name server as found in the Singularity Operating System, whose task implies maintaining
channels open towards every running process.

One could also write a program with multiple producers and consumers over a same
channel, effectively sharing endpoints between processes. This has already been discussed
on page 98 and we believe that it would be relatively painless to add to our programming
language but that it would be met with more resistance on the side of the proof system.
Indeed, our abstraction of the buffer contents by contracts would no longer be sensible, as
the control states associated to endpoints would change freely when one of its sharers acts
on it.

Another possible way of sharing channels would be to handle a broadcast mechanism on
endpoints: a channel would for instance have one endpoint on the sending side, but several
on the receiving one. This poses interesting theoretical challenges as well; for instance,
when a message is simultaneously received by all its recipients, how the corresponding
footprint would be distributed amongst them and how to include this mechanism in a proof
system is not obvious.

One can also wonder whether the concepts presented in this thesis apply to other existing
message-passing paradigms, for instance to P pipes or to the E programming
language, or even simply to programs that implement a form a message passing simply by
sharing buffers between threads, without higher-level language constructs.

Independently from message passing concerns, the language itself could be more full-
fledged and support realistic programming constructs such as function calls (which Heap-
Hop already support), arrays, or more general data structures. In particular, adding a support
for arrays in Heap-Hop would enable us to try and verify several message-passing examples
from the domain of intensive computing, where arrays and matrices are often passed around
between processes.

Automation Trying and automating the verification of message passing programs to the
extent of minimal to non-existent user interaction is a natural extension of our work on Heap-
Hop. We believe that we have given to our message passing primitives a logical status close
enough to the ones of other synchronisations in separation logic to claim that automating the
verification of programs in concurrent separation logic would likely result in progress in the
automation of verification in our own setting. There is however room for an additional sort
of automation: instead of specifying the protocols followed by the program, one could wish
to automate this process and infer contracts from a given program. This process is likely to
bear similarities to the inference of session types given a pi-calculus process. From the point
of view of the asserter, who has to verify existing programs that may not have been written
with certification in mind, it is crucial that formal tools only require a minimal amount of
work from his part (for instance, annotating the parts of a program that a tool fails to verify).

145

Conclusion

Towards certified concurrent programming Writing correct concurrent programs has
always contained a part of challenge for the programmer, who must avoid the many pits of
race conditions, deadlocks, and more generally must see to it that programs cooperate good-
manneredly instead of stepping on each other’s toes. One could hope to see programming
languages rise that make this task easier by providing a strong formal bedding to the pro-
gramming constructs, such that formal verification becomes possible even to non-experts
in the field. Tools towards this end may include contracts for channel communications or
explicit ownership tracking of resources by the language, which we hope this dissertation
has shown to be useful concepts in the context of message-passing program verification.

146

Bibliography

[ABS01] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool
for reachability analysis of complex systems. In CAV, volume 2102 of LNCS,
pages 368–372, 2001. Cited on page 7.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In ISCA,
pages 2–14, 1990. Cited on page 13.

[AJ93] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable
channels. In LICS, pages 160–170, 1993. Cited on page 54.

[Alg10] Jade Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7 and
INRIA, 2010. Cited on page 13.

[BAW10] Christian J. Bell, Andrew W. Appel, and David Walker. Concurrent separa-
tion logic for pipelined parallelization. In SAS, volume 6337 of LNCS, pages
151–166, 2010. Cited on pages 7, 98.

[BBL09] Kshitij Bansal, Rémi Brochenin, and Étienne Lozes. Beyond shapes: Lists
with ordered data. In FOSSACS, volume 5504 of LNCS, pages 425–439, 2009.
Cited on page 69.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’-
Hearn, Thomas Wies, and Hongseok Yang. Shape analysis for composite data
structures. In CAV, volume 4590 of LNCS, pages 178–192, 2007. Cited on
page 68.

[BCD+08] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangi-
ola Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically
interleaved multiparty sessions. In CONCUR, volume 5201 of LNCS, pages
418–433, 2008. Cited on page 144.

[BCO05a] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, volume 4111
of LNCS, pages 115–137, 2005. Cited on pages 130, 131.

147

Bibliography

[BCO05b] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution
with separation logic. In APLAS, volume 3780 of LNCS, pages 52–68, 2005.
Cited on pages 133, 134, 135, 136.

[BCY06] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as re-
source in separation logic. Electr. Notes Theor. Comput. Sci., 155:247–276,
2006. Cited on pages 65, 67, 72.

[Bol06] Benedikt Bollig. Formal Models of Communicating Systems - Languages, Au-
tomata, and Monadic Second-Order Logic. Springer, 2006. Cited on pages 45,
51.

[Bor00] Richard Bornat. Proving pointer programs in hoare logic. In MPC, volume
1837 of Lecture Notes in Computer Science, pages 102–126, 2000. Cited on
page 3.

[BP09] Gérard Boudol and Gustavo Petri. Relaxed memory models: an operational
approach. In POPL, pages 392–403, 2009. Cited on page 13.

[Bro07] Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput.
Sci., 375(1-3):227–270, 2007. Cited on pages 35, 72, 74, 102, 112, 114.

[Bur72] Rodney M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence, 7(1):23–50, 1972. Cited on
page 3.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines.
J. ACM, 30(2):323–342, 1983. Cited on page 50.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977. Cited on page 5.

[CDOY06] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang.
Beyond reachability: Shape abstraction in the presence of pointer arithmetic.
In SAS, volume 4134 of LNCS, pages 182–203, 2006. Cited on page 68.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986. Cited on page 5.

[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex com-
munication. Inf. Comput., 202(2):166–190, 2005. Cited on pages 7, 28, 43,
53, 54.

[CFI96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels
are easier to verify than perfect channels. Inf. Comput., 124(1):20–31, 1996.
Cited on page 7.

148

Bibliography

[CO01] Cristiano Calcagno and Peter W. O’Hearn. On garbage and program logic. In
FoSSaCS, volume 2030 of LNCS, pages 137–151, 2001. Cited on page 19.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In LICS, pages 366–378, 2007. Cited on pages 35,
97, 102.

[Dod09] Mike Dodds. Graph transformation and pointer structures. PhD thesis, 2009.
Cited on page 68.

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In TACAS, volume 3920 of LNCS, pages 287–302,
2006. Cited on page 5.

[DY10] Pierre-Malo Deniélou and Nobuko Yoshida. Buffered communication analysis
in distributed multiparty sessions. In CONCUR, volume 6269 of LNCS, pages
343–357, 2010. Cited on page 64.

[FAH+06] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C.
Hunt, James R. Larus, and Steven Levi. Language support for fast and reliable
message-based communication in Singularity OS. In EuroSys, pages 177–190,
2006. Cited on pages 4, 18, 20, 26, 27, 28, 43, 45, 46.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Mathematics, volume 19, pages 19–32, 1967. Cited
on pages 3, 69.

[FM97] Alain Finkel and Pierre McKenzie. Verifying identical communicating pro-
cesses is undecidable. Theor. Comput. Sci., 174(1-2):217–230, 1997. Cited
on page 50.

[GBC+07] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sa-
giv. Local reasoning for storable locks and threads. In APLAS, LNCS, pages
19–37, 2007. Cited on pages 7, 15, 34, 65, 74, 80, 94, 102, 122.

[HAN08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle
semantics for concurrent separation logic. In ESOP, volume 4960 of LNCS,
pages 353–367, 2008. Cited on page 102.

[HGS09] Alexander Heußner, Tristan Le Gall, and Grégoire Sutre. Extrapolation-based
path invariants for abstraction refinement of FIFO systems. In SPIN, volume
5578 of LNCS, pages 107–124, 2009. Cited on page 7.

[HKP+10] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei
Honda. Type-safe eventful sessions in Java. In ECOOP, volume 6183 of LNCS,
pages 329–353, 2010. Cited on page 7.

[HL07] Galen C. Hunt and James R. Larus. Singularity: rethinking the software stack.
Operating Systems Review, 41(2):37–49, 2007. Cited on pages 2, 18.

149

Bibliography

[HO08] Tony Hoare and Peter W. O’Hearn. Separation logic semantics for communi-
cating processes. Electr. Notes Theor. Comput. Sci., 212:3–25, 2008. Cited
on page 6.

[Hoa69] Tony Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. Cited on pages 3, 69.

[Hoa78] Tony Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978. Cited on page 6.

[Hol97] Gerard J. Holzmann. The model checker Spin. IEEE Trans. Software Eng.,
23(5):279–295, 1997. Cited on page 7.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Pub, 2008. Cited on pages 13, 14.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based program-
ming. In ESOP, volume 1381 of LNCS, pages 122–138, 1998. Cited on page 6.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. In POPL, pages 273–284, 2008. Cited on pages 6, 63, 144.

[HYH08] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed
programming in Java. In ECOOP, volume 5142 of LNCS, pages 516–541,
2008. Cited on pages 7, 26.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In POPL, pages 14–26, 2001. Cited on page 3.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983. Cited on page 7.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979.
Cited on page 13.

[LM09] K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded
programs. In ESOP, volume 5502 of Lecture Notes in Computer Science,
pages 378–393, 2009. Cited on page 7.

[LMS10] K. Rustan M. Leino, Peter Müller, and Jan Smans. Deadlock-free channels
and locks. In ESOP, volume 6012 of LNCS, pages 407–426, 2010. Cited on
pages 7, 144.

[May81] Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
STOC, pages 238–246, 1981. Cited on page 54.

150

Bibliography

[Maz86] Antoni W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume 255
of LNCS, pages 279–324, 1986. Cited on page 6.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980. Cited on page 6.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cam-
bridge Univ Pr, 1999. Cited on page 6.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. 1967. Cited
on page 54.

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel
programs i. Acta Inf., 6:319–340, 1976. Cited on page 75.

[O’H04] Peter W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR,
volume 3170 of LNCS, pages 49–67, 2004. Cited on page 73.

[O’H07] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Com-
put. Sci., 375(1-3):271–307, 2007. Cited on pages 17, 65, 73, 74.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bul-
letin of Symbolic Logic, 5(2):215–244, 1999. Cited on page 3.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In CSL, volume 2142 of Lecture
Notes in Computer Science, pages 1–19, 2001. Cited on page 3.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-tso. In TPHOLs, volume 5674 of LNCS, pages 391–407, 2009. Cited on
page 13.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, 2002. Cited on pages 3, 65, 69.

[Rey04] John C. Reynolds. Toward a grainless semantics for shared-variable concur-
rency. In FSTTCS, volume 3328 of LNCS, pages 35–48, 2004. Cited on
page 13.

[RG08] Mohammad Raza and Philippa Gardner. Footprints in local reasoning. In
FoSSaCS, volume 4962 of LNCS, pages 201–215, 2008. Cited on page 70.

[SB09] Zachary Stengel and Tevfik Bultan. Analyzing Singularity channel contracts.
In ISSTA, pages 13–24, 2009. Cited on pages 6, 28, 43, 45, 59.

[ST77] George S. Sacerdote and Richard L. Tenney. The decidability of the reachability
problem for vector addition systems (preliminary version). In STOC, pages
61–76, 1977. Cited on page 54.

151

Bibliography

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based lan-
guage and its typing system. In PARLE, volume 817 of LNCS, pages 398–413,
1994. Cited on pages 6, 26, 28, 63, 88, 92.

[Vaf07] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis,
University of Cambridge, 2007. Cited on pages 7, 13, 65, 74, 102, 112, 114.

[VLC09] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless mes-
sage passing. In APLAS, volume 5904 of LNCS, pages 194–209, 2009. Cited
on pages 6, 97, 98, 99.

[VLC10] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking heaps that hop
with Heap-Hop. In TACAS, volume 6015 of LNCS, pages 275–279, 2010. Cited
on page 6.

[VP07] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, volume 4703 of LNCS, pages 256–271, 2007.
Cited on pages 7, 15, 102.

[YDBH10] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Pa-
rameterised multiparty session types. In FOSSACS, volume 6014 of LNCS,
pages 128–145, 2010. Cited on page 64.

152

	Abstract
	Remerciements
	Introduction
	Table of notations

	Concurrency and Ownership
	Concurrency and the heap
	Concurrent programs
	Race-free programs
	Synchronisation
	Ownership
	Memories

	Message passing
	Communication primitives
	Examples
	Design choices
	Problems of interest
	Encoding locks and message passing into one another
	Further examples of message passing

	A Model of Copyless Message Passing
	Programming language
	Hip
	HipMP

	Semantics
	States
	Notations
	Operational semantics
	Properties of the operational semantics

	Dialogue systems
	Communicating systems
	Definition
	Dialogue systems and contracts
	Semantics
	Safety properties

	Verification of communicating systems
	Simulation of a Turing machine by a dialogue system
	A decidable class: half-duplex systems

	Contracts
	Syntactic sufficient conditions
	Contract verification is undecidable

	Conclusion

	Concurrent Separation Logics
	Assertions
	Models
	Syntax
	Semantics
	Derived formulas
	Inductive predicates

	Proof system
	An extension of Floyd-Hoare logic
	Small axioms
	Proof rules
	Conditional critical regions

	Proving Copyless Message Passing
	Proof system
	Session states
	Assertions
	Rules for communication

	Examples
	Cell and endpoint passing
	Automatic teller machine

	Restrictions of the proof system
	Deterministic contracts
	Precision of message footprints
	Channel closure leaks
	Cycles of ownership leaks
	A first soundness result

	Related work

	Open Behaviours and Soundness
	Open states
	Well-formed open states

	Open operational semantics
	Open semantics of programs
	Subject reduction

	Soundness
	Locality up to interferences
	Soundness

	Properties of proved programs
	From open states to closed states
	Runtime validity
	Owned portion of a state
	Leak freedom
	Boundedness of communications and deadlock-freedom

	Heap-Hop
	Input
	Programming language
	Contracts
	Logical fragment

	Internals
	Verification condition
	Symbolic execution
	Entailment checking and frame inference
	Contract verification

	Output
	Properties of the contracts
	Hoare-triple verification

	Distribution
	Public distribution
	Case studies

	Conclusion

