Heaps and Hops Soutenance de thèse

Jules Villard

LSV, ENS Cachan, CNRS

Moore's Law

The number of transistors one can put on a chip doubles every two years

Moore's Law

The number of transistors one can put on a chip doubles every two years

Moore's law until recently

The frequency of processors doubles every two years

Moore's Law

The number of transistors one can put on a chip doubles every two years

Moore's law until recently

The frequency of processors doubles every two years

Moore's law nowadays

- The frequency of processors is reaching limits
- Augment the number of processors on a chip!

Moore's Law

The number of transistors one can put on a chip doubles every two years

Moore's law until recently

The frequency of processors doubles every two years

Moore's law nowadays

- The frequency of processors is reaching limits
- Augment the number of processors on a chip!
- Concurrent programs are more needed than ever
- They are hard to write correctly and efficiently

Message Passing in Multicore Systems

- New paradigm: message passing over a shared memory
- Leads to efficient, copyless message passing
- May be more error-prone

- (e,f): channel
- data points to a big struct
- struct: type of message

- (e,f): channel
- data points to a big struct
- struct: type of message

Singularity: a research project and an operating system.

- No hardware memory protection
- Isolation is verified at compile time
- Invariant: each memory cell is owned by at most one thread
- No shared resources
- Copyless message passing

memory

Singularity: a research project and an operating system.

- No hardware memory protection
- Isolation is verified at compile time
- Invariant: each memory cell is owned by at most one thread
- No shared resources
- Copyless message passing

Singularity Features

[Fähndrich et al. '06]

- Channels are bidirectional and asynchronous channel = pair of FIFO queues
- Channels are made of two endpoints
 similar to the socket model
- Endpoints can be allocated, disposed of, and communicated through channels

similar to the π -calculus

- Communications are ruled by user-defined contracts similar to session types
- No formalisation

How to ensure the absence of bugs?

Formal Verification

- Model of the program
- Specify a correctness criterion in a mathematical language
- Prove a theorem which links the two

Main Contributions of the Thesis

- Model of the program
 - Semantics of copyless message passing programs
- Specify a correctness criterion in a mathematical language
 - Hoare triples: separation logic for channels in the heap
 - Contracts
- Prove a theorem which links the two
 - Automatic tool: Heap-Hop
 - Extend the proof system of separation logic
 - Properties of contracts rub off on programs

Our Analysis

Message Passing Primitives

- (e,f) = open() Creates a bidirectional channel between endpoints e and f
- close(e,f) Closes the channel (e,f)
- send(a,e,x) Sends message starting with value x on endpoint e. The message has type/tag a
- x = receive(a,e) Receives message of type a on endpoint e and stores its value in x

```
set_to_ten(x) {
   local e,f;
   (e,f) = open();
   send(integer,e,10);
   x = receive(integer,f);
   close(e,f);
}
```

Switch Receive

 switch receive selects a receive branch depending on availability of messages

```
if( x ) {
   send(cell,e,x);
} else {
   send(integer,e,0);
}
```

```
switch receive {
  y = receive(cell,f): {dispose(y);}
  z = receive(integer,f): {}
}
```


Separation property

At each point in the execution, the state can be **partitioned** into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.

memory

Separation property

At each point in the execution, the state can be **partitioned** into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.

Separation property

At each point in the execution, the state can be **partitioned** into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.

Separation property

At each point in the execution, the state can be **partitioned** into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.

Separation property

Invalid receptions freedom

switch receive are exhaustive.

```
...
switch receive {
   y = receive(a,f): { ... }
   z = receive(b,f): { ... }
}
...
```

```
...
send(c,e,x);
```

Separation property

Invalid receptions freedom

Leak freedom

The program does not leak memory.

```
main() {
  local x,e,f;

x = new();
(e,f) = open();
send(cell,e,x);
close(e,f);
}
```


- Sending transitions: !a
- Receiving transitions: ?a
- Two buffers: one in each direction
- Configuration: \(\langle q, q', w, w' \rangle \)

$$\langle q, q_0, \varepsilon, \varepsilon \rangle$$

$$\langle q, q_1, a, \varepsilon \rangle$$

$$\langle \textbf{q}, \textbf{q}_3, \textbf{b}, \varepsilon \rangle$$

$$\langle q_b, q_3, \varepsilon, \varepsilon \rangle$$

$$\langle q, q_3, \varepsilon, b \rangle$$

$$\langle q, q_4, \varepsilon, \varepsilon \rangle$$

Contracts

Describe dual communicating finite state machines

Contracts

Describe dual communicating finite state machines

Contracts

Describe dual communicating finite state machines

Contracts as Protocol Specifications

- (e,f) = open(C): initialise endpoints in the initial state of the contract
- send(a,e,x): becomes a !a transition
- y = receive(a,f): becomes a ?a transition
- closed(e,f) only when both endpoints are in the same final state.

Reception fault

 $\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a reception fault if

- $q_1 \xrightarrow{?b} q$ for some b and q and
- $\forall b, q. q_1 \xrightarrow{?b} q \text{ implies } b \neq a$

$$\langle q, q, \varepsilon, \varepsilon \rangle$$

Reception fault

 $\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a reception fault if

- $q_1 \xrightarrow{?b} q$ for some b and q and
- $\forall b, q. q_1 \xrightarrow{?b} q \text{ implies } b \neq a$

 $\langle q_1, q, a, \varepsilon \rangle$

Reception fault

 $\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a reception fault if

- $q_1 \xrightarrow{?b} q$ for some b and q and
- $\forall b, q. q_1 \xrightarrow{?b} q \text{ implies } b \neq a$

 $\langle q_1, q'_1, a, b \rangle$

Reception fault

 $\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a reception fault if

- $q_1 \xrightarrow{?b} q$ for some b and q and
- $\forall b, q. q_1 \xrightarrow{?b} q \text{ implies } b \neq a$

$$\langle q_1, q_1', a, b \rangle \xrightarrow{?b}_2 \text{error}$$

Reception fault

 $\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a reception fault if

- $q_1 \stackrel{?b}{\longrightarrow} q$ for some b and q and
- $\forall b, q. q_1 \stackrel{?b}{\longrightarrow} q \text{ implies } b \neq a$
- A contract is reception fault-free if it cannot reach a reception fault.

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

 $\langle q, q, \varepsilon, \varepsilon \rangle$

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

$$\langle q_1, q, a, \varepsilon \rangle$$

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

 $\langle q_2, q, aa, \varepsilon \rangle$

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

 $\langle q_2, q_2, a, \varepsilon \rangle$

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

 $\langle q_2, q_2, \mathbf{a}, \varepsilon \rangle$

Definition Leak

 $\langle q_f, q_f, w_1, w_2 \rangle$ is a **leak** if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.

- A contract is leak free if it cannot reach a leak.
- A contract is **safe** if it is reception fault free and leak free.

Safety of communicating systems is undecidable in general
 Channel's buffer ≈ Turing machine's tape

- Safety of communicating systems is undecidable in general Channel's buffer ≈ Turing machine's tape
- Contracts are restricted (dual systems)

- Safety of communicating systems is undecidable in general Channel's buffer ≈ Turing machine's tape
- Contracts are restricted (dual systems)
- Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

- Safety of communicating systems is undecidable in general Channel's buffer ≈ Turing machine's tape
- Contracts are restricted (dual systems)
- Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

We give sufficient conditions for safety.

Definition

Deterministic contract

Two distinct edges in a contract must be labelled by different messages.

Definition

Deterministic contract

Definition

Positional contracts

All outgoing edges from a same state in a contract must be either all sends or all receives.

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan'09] • [V., Lozes & Calcagno '09]

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan'09] • [V., Lozes & Calcagno '09]

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan'09] • [V., Lozes & Calcagno '09]

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan'09] • [V., Lozes & Calcagno '09]

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan'09] • [V., Lozes & Calcagno '09]

 $\langle q, q, a, \varepsilon \rangle$

 $\langle q, q, aaa, \varepsilon \rangle$

Synchronising Contracts

Definition

Synchronising state

A state *s* is synchronising if every cycle that goes through it contains at least one send and one receive.

Synchronising Contracts

Definition

Synchronising state

A state *s* is synchronising if every cycle that goes through it contains at least one send and one receive.

Definition

Synchronising contract

A contract is synchronising if all its final states are.

Synchronising Contracts

Definition

Synchronising state

A state *s* is synchronising if every cycle that goes through it contains at least one send and one receive.

Definition

Synchronising contract

A contract is synchronising if all its final states are.

Theorem

[V., Lozes & Calcagno '09]

Deterministic, positional and synchronising contracts are **safe** (fault and leak free).

Singularity Contracts

Definition

Singularity contract

Singularity contracts are deterministic and **all** their states are synchronising.

- This is missing the positional condition!
- Does not guarantee reception fault freedom
- In fact, we proved that safety is still undecidable for deterministic or positional contracts.
- Positional Singularity contracts are safe and bounded.

Separation Logic

Separation Logic

[Reynolds 02, O'Hearn 01, ...]

- An assertion language to describe states
- A proof system for Hoare triples
- Local reasoning for heap-manipulating programs
- Naturally describes ownership transfers
- Has been extended to storable locks [Gotsman et al. 07]

Assertions

Syntax

$$E := x \mid n \in \{0, 1, 2, \dots\} \mid \dots$$
 expression
$$\phi := E_1 = E_2 \mid E_1 \neq E_2$$
 stack prescribed by the present
$$|emp| E_1 \mapsto E_2$$
 heap prescribed by the prescr

expressions stack predicates heap predicates

Assertion Language (extension)

Syntax (continued)

$$\phi := \ldots \mid E \mapsto (\mathfrak{C}\{q\}, E')$$
 endpoint predicate

Intuitively $E \mapsto (\mathfrak{C}\{q\}, E')$ means:

- E is an allocated endpoint
- it is ruled by contract e
- it is currently in the control state q of $\mathfrak C$
- its peer is E'

[V., Lozes & Calcagno TACAS'10]

Operational Semantics

Memory States σ

A memory state σ has three components

- A variable valuation (stack)
- A heap for memory cells
- Buffers for endpoints

Semantics of programs

Small-step interleaving operational semantics for programs *p*:

$$p, \sigma \rightarrow^* p', \sigma'$$
 (intermediate state)
 $p, \sigma \rightarrow^* \sigma'$ (final state)
 $p, \sigma \rightarrow^*$ error (error state)

$\{\phi\} p \{\psi\}$: Hoare triple

- ϕ , ψ : formulas
- p: program

Fault-free interpretation of Hoare triples

If $\{\phi\}$ p $\{\psi\}$ is provable, then for all state $\sigma \models \phi$,

- 1. p has no race or memory faults from σ
- 2. p implements its contracts
- 3. if $p, \sigma \rightarrow^* \sigma'$ then $\sigma' \models \psi$

Proof system

Derivation rules to prove Hoare triples.

Rules of the Proof System

SKIP	ASSUME		Assign		LOOKUP		MUTATE	
New	DISPOSE		SEQUENCE		Parallel		Сноісе	
Star		LOCAL		FRAME	IE WEA		AKENING	
Conjun	NCTION	Dis	SJUNCT	ION	EXISTE	NTIAL	OPEN	
CLOSE	SE	ND	CHAN	NELDIS	PATCH	Ex.	тСноісе	

Communication Rules

CLOSE

$$\frac{q \in \mathsf{finals}(\mathfrak{C})}{\{e \mapsto (\mathfrak{C}\{q\}, f) * f \mapsto (\tilde{\mathfrak{C}}\{q\}, e)\} \; \mathsf{close}(e, f) \; \{\mathsf{emp}\}}$$

SEND

$$\frac{q \xrightarrow{!a} q' \in \mathfrak{C} \qquad e \mapsto (\mathfrak{C}\{q'\}, -) * \phi \Rightarrow \gamma_a(e, x) * \phi'}{\{e \mapsto (\mathfrak{C}\{q\}, -) * \phi\} \text{ send}(a, e, x) \{\phi'\}}$$

RECEIVE

$$q \xrightarrow{?a} q' \in \mathfrak{C}$$

$$\{e \mapsto (\mathfrak{C}\{q\}, X')\} \text{ x = receive}(a, e) \{e \mapsto (\mathfrak{C}\{q'\}, X') * \gamma_a(X', x)\}$$

Communication Rules

$$\frac{Q \in \mathsf{finals}(\mathfrak{C})}{\{e \mapsto (\mathfrak{C}\{q\},f) * f \mapsto (\tilde{\ }\mathfrak{C}\{q\},e)\} \; \mathsf{close}(e,f) \; \{\mathsf{emp}\}}$$

$$q \xrightarrow{?a} q' \in \mathfrak{C}$$

$$\{e \mapsto (\mathfrak{C}\{q\}, X')\} \times = \text{receive}(a, e) \{e \mapsto (\mathfrak{C}\{q'\}, X') * \gamma_a(X', x)\}$$

Closing a Channel

CLOSE

$$q \in finals(\mathfrak{C})$$

$$\overline{\{e \mapsto (\mathfrak{C}\{q\}, f) * f \mapsto (\tilde{\mathfrak{C}}\{q\}, e)\} \text{ close(e, f) } \{emp\}}$$

Closing a Channel

$$q \in \mathsf{finals}(\mathfrak{C})$$

$$\overline{\{e \mapsto (\mathfrak{C}\{q\},f) * f \mapsto (\tilde{\ }\mathfrak{C}\{q\},e)\} \text{ close(e,f) } \{\text{emp}\}}$$

General Rule for Receive

RECEIVE

$$\frac{q \xrightarrow{?a} q' \in \mathfrak{C}}{\{e \mapsto (\mathfrak{C}\{q\}, X')\} \times = \text{receive}(a, e) \{e \mapsto (\mathfrak{C}\{q'\}, X') * \gamma_a(X', x)\}}$$

General Rule for Receive

RECEIVE

$$\frac{q \xrightarrow{?a} q' \in \mathfrak{C}}{\{e \mapsto (\mathfrak{C}\{q\}, X')\} \times = \text{receive}(a,e) \{e \mapsto (\mathfrak{C}\{q'\}, X') * \gamma_a(X', x)\}}$$

General Rule for Receive

RECEIVE

$$\frac{q \xrightarrow{?a} q' \in \mathfrak{C}}{\{e \mapsto (\mathfrak{C}\{q\}, X')\} \times = \text{receive}(a,e) \{e \mapsto (\mathfrak{C}\{q'\}, X') * \gamma_a(X', x)\}}$$

Can be instantiated for each example:

$$\gamma_{\text{cell}} (\text{src}, \text{val}) \triangleq \text{val} \mapsto \gamma_{\text{ep}} (\text{src}, \text{val}) \triangleq \text{val} \mapsto (\mathfrak{C} \{\text{end}\}, -) \land \text{val} = \text{src}$$

Validity and Leak Freedom

Definition

Program validity

 $\{\phi\} \ p \ \{\psi\}$ is valid if, for all $\sigma \models \phi$

- p has no race or memory fault starting from σ
- p has no reception faults starting from σ
- if $p, \sigma \rightarrow^* \sigma'$ then $\sigma' \models \psi$

Definition

Leak free programs

p is **leak free** if for all σ

 $p, \sigma \rightarrow^* \sigma'$ implies that the heap and buffers of σ' are empty

Properties of Proved Programs

Theorem Soundness

If $\{\phi\}$ p $\{\psi\}$ is provable with **reception fault free** contracts then $\{\phi\}$ p $\{\psi\}$ is valid.

Theorem Leak freedom

If $\{\phi\}$ p $\{emp\}$ is provable with **leak free** contracts then p is leak free.

Conclusion

Contributions

Contracts

- Formalisation of contracts
- Automatic verification of contract properties

Program analysis

- First extension of separation logic to message passing
- Formalisation of heap-manipulating, message passing programs with contracts
- Contracts and proofs collaborate to prove freedom from reception errors and leaks
- Tool that integrates this analysis: Heap-Hop

990 4 ₱ ▶ 4 ≣ ▶

Perspectives

Contracts

- Prove progress for programs
- Extend to the multiparty case
- Enrich contracts with counters, non determinism, . . .

Automatic program verification

- · Discover specs and message footprints
- Discover contracts
- Fully automated tool

990 4**□** ▶ 4 **≥** ▶

