
Heaps and Hops
Soutenance de thèse

Jules Villard

LSV, ENS Cachan, CNRS

Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every
two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

● The frequency of processors is reaching limits
● Augment the number of processors on a chip!

● Concurrent programs are more needed than ever
● They are hard to write correctly and efficiently

Introduction ● Concurrency /

Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every
two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

● The frequency of processors is reaching limits
● Augment the number of processors on a chip!

● Concurrent programs are more needed than ever
● They are hard to write correctly and efficiently

Introduction ● Concurrency /

Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every
two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

● The frequency of processors is reaching limits
● Augment the number of processors on a chip!

● Concurrent programs are more needed than ever
● They are hard to write correctly and efficiently

Introduction ● Concurrency /

Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every
two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

● The frequency of processors is reaching limits
● Augment the number of processors on a chip!

● Concurrent programs are more needed than ever
● They are hard to write correctly and efficiently

Introduction ● Concurrency /

Message Passing in Multicore Systems

● New paradigm: message passing over a shared memory
● Leads to efficient, copyless message passing
● May be more error-prone

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

● (e,f): channel
● data points to a big struct
● struct: type of message

Copyless

send(pointer,e,data);

data

d = receive(pointer,f);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

● (e,f): channel
● data points to a big struct
● struct: type of message

Copyless

send(pointer,e,data);

data

d = receive(pointer,f);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

Copyless

send(pointer,e,data);

data

d = receive(pointer,f);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

Copyless

send(pointer,e,data);

data

d = receive(pointer,f);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

Copyless Race!

send(pointer,e,data);
dispose(data);

data

d = receive(pointer,f);
dispose(d);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

Copyless Race!

send(pointer,e,data);
dispose(data);

data

d = receive(pointer,f);
dispose(d);

d

Introduction ● Concurrency /

To Copy or not to Copy?

Copyful

send(struct,e,data);

data

d = receive(struct,f);

d

Copyless No race

send(pointer,e,data);

data

d = receive(pointer,f);
dispose(d);

d

Introduction ● Concurrency /

Singularity OS

Singularity: a research project and an operating system.

● No hardware memory protection
● Sing♯ language
● Isolation is verified at compile time
● Invariant: each memory cell is owned

by at most one thread
● No shared resources
● Copyless message passing

p1

p2 p3

memory

Introduction ● Concurrency /

Singularity OS

Singularity: a research project and an operating system.

● No hardware memory protection
● Sing♯ language
● Isolation is verified at compile time
● Invariant: each memory cell is owned

by at most one thread
● No shared resources
● Copyless message passing

p1

p2 p3

memory

Introduction ● Concurrency /

Singularity Features

[Fähndrich et al. ’06]

● Channels are bidirectional and asynchronous
channel = pair of FIFO queues

● Channels are made of two endpoints
similar to the socket model

● Endpoints can be allocated, disposed of, and
communicated through channels

similar to the π-calculus
● Communications are ruled by user-defined contracts

similar to session types
⊖ No formalisation

How to ensure the absence of bugs?

Introduction ● Concurrency /

Formal Verification

● Model of the program
● Specify a correctness criterion in a mathematical language
● Prove a theorem which links the two

Introduction ● Formal Verification /

Main Contributions of the Thesis

● Model of the program
○ Semantics of copyless message passing programs

● Specify a correctness criterion in a mathematical
language
○ Hoare triples: separation logic for channels in the heap
○ Contracts

● Prove a theorem which links the two
○ Automatic tool: Heap-Hop
○ Extend the proof system of separation logic
○ Properties of contracts rub off on programs

Introduction ● Formal Verification /

Our Analysis

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

Model Prove Specify

Introduction ● Formal Verification /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● message passing
primitives

Message Passing Primitives

● (e,f) = open() Creates a bidirectional channel between
endpoints e and f

● close(e,f) Closes the channel (e, f)
● send(a,e,x) Sends message starting with value x on

endpoint e. The message has type/tag a

● x = receive(a,e) Receives message of type a on
endpoint e and stores its value in x

1 set_to_ten(x) {
2 local e,f;
3 (e,f) = open ();
4 send(integer ,e ,10);
5 x = receive(integer ,f);
6 close(e,f);
7 }

Copyless Message Passing ● Language Model /

Switch Receive

● switch receive selects a receive branch depending on
availability of messages

if(x) {
send(cell ,e,x);

} else {
send(integer ,e,0);

}

switch receive {
y = receive(cell ,f): {dispose(y);}
z = receive(integer ,f): {}

}

Copyless Message Passing ● Language Model /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● Race freedom

● Reception fault freedom

● Leak freedom

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

● Programs access
only what they own.

● Prevents races.

memory

Invalid receptions freedom

Leak freedom

Copyless Message Passing ● Properties of Interest /

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

● Programs access
only what they own.

● Prevents races.
m1

m2

m3

p1 p2

memory

Invalid receptions freedom

Leak freedom

Copyless Message Passing ● Properties of Interest /

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

● Programs access
only what they own.

● Prevents races.
m1

m2

m3

p1 p2

cell

memory

Invalid receptions freedom

Leak freedom

Copyless Message Passing ● Properties of Interest /

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

● Programs access
only what they own.

● Prevents races.
m1

m2

m3

p1 p2

memory

Invalid receptions freedom

Leak freedom

Copyless Message Passing ● Properties of Interest /

Safety Properties

Separation property

Invalid receptions freedom

switch receive are exhaustive.

...
switch receive {

y = receive(a,f): { ... }
z = receive(b,f): { ... }

}
...

...
send(c,e,x);
...

Leak freedom

Copyless Message Passing ● Properties of Interest /

Safety Properties

Separation property

Invalid receptions freedom

Leak freedom

The program does not leak memory.

1 main() {
2 local x,e,f;
3

4 x = new ();
5 (e,f) = open ();
6 send(cell ,e,x);
7 close(e,f);
8 }

Copyless Message Passing ● Properties of Interest /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.
● Communicating automata

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

● Sending transitions: !a
● Receiving transitions: ?a
● Two buffers: one in each direction
● Configuration: ⟨q,q′,w ,w ′⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q0, ε, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q1,a, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q2,ab, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨qa,q2,b, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q2,b,a⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q3,b, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨qb,q3, ε, ε⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q3, ε,b⟩

Channel Contracts ● Communicating Automata /

A Dialogue System

qqa qb

?a ?b

!a !b

q0 q1 q2 q3 q4
!a !b ?a ?b

⟨q,q4, ε, ε⟩

Channel Contracts ● Communicating Automata /

Contracts

Describe dual communicating finite state machines

C init end
!pointer

init end
?pointer ˜C

C′ q

q′

end

!cell ?ack

!fin
q

q′

end

?cell !ack

?fin ˜C

Channel Contracts ● Communicating Automata /

Contracts

Describe dual communicating finite state machines

C init end
!pointer

init end
?pointer ˜C

C′ q

q′

end

!cell ?ack

!fin
q

q′

end

?cell !ack

?fin ˜C

Channel Contracts ● Communicating Automata /

Contracts

Describe dual communicating finite state machines

C init end
!pointer

init end
?pointer ˜C

C′ q

q′

end

!cell ?ack

!fin
q

q′

end

?cell !ack

?fin ˜C

Channel Contracts ● Communicating Automata /

Contracts as Protocol Specifications

● (e,f) = open(C): initialise endpoints in the initial state of
the contract

● send(a,e,x): becomes a !a transition
● y = receive(a,f): becomes a ?a transition
● closed(e,f) only when both endpoints are in the same

final state.

Channel Contracts ● Communicating Automata /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● Reception faults

● Leaks

Reception Errors

Definition Reception fault

⟨q1,q2,a ⋅w1,w2⟩ is a reception fault if

● q1
?b
Ð→ q for some b and q and

● ∀b,q.q1
?b
Ð→ q implies b ≠ a

q

q1

q′1

q2

!a

?b

?a

!b

q

q1

q′1

q2

?a

!b

!a

?b

⟨q,q, ε, ε⟩

?b
Ð→2 error

Channel Contracts ● Contract Verification /

Reception Errors

Definition Reception fault

⟨q1,q2,a ⋅w1,w2⟩ is a reception fault if

● q1
?b
Ð→ q for some b and q and

● ∀b,q.q1
?b
Ð→ q implies b ≠ a

q

q1

q′1

q2

!a

?b

?a

!b

q

q1

q′1

q2

?a

!b

!a

?b

⟨q1,q,a, ε⟩

?b
Ð→2 error

Channel Contracts ● Contract Verification /

Reception Errors

Definition Reception fault

⟨q1,q2,a ⋅w1,w2⟩ is a reception fault if

● q1
?b
Ð→ q for some b and q and

● ∀b,q.q1
?b
Ð→ q implies b ≠ a

q

q1

q′1

q2

!a

?b

?a

!b

q

q1

q′1

q2

?a

!b

!a

?b

⟨q1,q′1,a,b⟩

?b
Ð→2 error

Channel Contracts ● Contract Verification /

Reception Errors

Definition Reception fault

⟨q1,q2,a ⋅w1,w2⟩ is a reception fault if

● q1
?b
Ð→ q for some b and q and

● ∀b,q.q1
?b
Ð→ q implies b ≠ a

q

q1

q′1

q2

!a

?b

?a

!b

q

q1

q′1

q2

?a

!b

!a

?b

⟨q1,q′1,a,b⟩
?b
Ð→2 error

Channel Contracts ● Contract Verification /

Reception Errors

Definition Reception fault

⟨q1,q2,a ⋅w1,w2⟩ is a reception fault if

● q1
?b
Ð→ q for some b and q and

● ∀b,q.q1
?b
Ð→ q implies b ≠ a

● A contract is reception fault-free if it cannot reach a
reception fault.

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

q q1 q2
!a

!a

!a
q q1 q2

?a

?a

?a

⟨q,q,

a

ε, ε⟩

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

q q1 q2
!a

!a

!a
q q1 q2

?a

?a

?a

⟨q1,q,

a

a, ε⟩

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

q q1 q2
!a

!a

!a
q q1 q2

?a

?a

?a

⟨q2,q,aa, ε⟩

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

q q1 q2
!a

!a

!a
q q1 q2

?a

?a

?a

⟨q2,q2,a, ε⟩

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

q q1 q2
!a

!a

!a
q q1 q2

?a

?a

?a

⟨q2,q2,a, ε⟩

Channel Contracts ● Contract Verification /

Undelivered Messages

Definition Leak

⟨qf ,qf ,w1,w2⟩ is a leak if w1 ⋅w2 ≠ ε and qf is final.

● A contract is leak free if it cannot reach a leak.
● A contract is safe if it is reception fault free and leak free.

Channel Contracts ● Contract Verification /

Contract Verification

⊖ Safety of communicating systems is undecidable in general
Channel’s buffer ≈ Turing machine’s tape

● Contracts are restricted (dual systems)
⊖ Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

● We give sufficient conditions for safety.

Channel Contracts ● Contract Verification /

Contract Verification

⊖ Safety of communicating systems is undecidable in general
Channel’s buffer ≈ Turing machine’s tape

⊕ Contracts are restricted (dual systems)

⊖ Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

● We give sufficient conditions for safety.

Channel Contracts ● Contract Verification /

Contract Verification

⊖ Safety of communicating systems is undecidable in general
Channel’s buffer ≈ Turing machine’s tape

● Contracts are restricted (dual systems)
⊖ Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

● We give sufficient conditions for safety.

Channel Contracts ● Contract Verification /

Contract Verification

⊖ Safety of communicating systems is undecidable in general
Channel’s buffer ≈ Turing machine’s tape

● Contracts are restricted (dual systems)
⊖ Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

● We give sufficient conditions for safety.

Channel Contracts ● Contract Verification /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Two distinct edges in a contract must be labelled by different
messages.

q
q1

q2

!a

!a
q

q1

q2

!a

!b
q

q1

q2

!a

?a

Definition Positional contracts

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

All outgoing edges from a same state in a contract must be
either all sends or all receives.

q
q1

q2

!a1

?a2

q
q1

q2

!a1

!a2

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

Theorem [Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

q

q1

q′1

q2

q′2

!a

!b

?a′

?b′ q

q1

q′1

q2

q′2

?a

?b

!a′

!b′

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

Theorem [Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

q

q1

q′1

q2

q′2

!a

!b

?a′

?b′ q

q1

q′1

q2

q′2

?a

?b

!a′

!b′

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

Theorem [Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

q

q1

q′1

q2

q′2

!a

!b

?a′

?b′ q

q1

q′1

q2

q′2

?a

?b

!a′

!b′

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

Theorem [Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

q

q1

q′1

q2

q′2

!a

!b

?a′

?b′ q

q1

q′1

q2

q′2

?a

?b

!a′

!b′

Channel Contracts ● Singularity Contracts /

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

Theorem [Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

q

q1

q′1

q2

q′2

!a

!b

?a′

?b′ q

q1

q′1

q2

q′2

?a

?b

!a′

!b′

Channel Contracts ● Singularity Contracts /

Another Source of Leaks

q

!a

q

?a

⟨q,q, ε, ε⟩

Channel Contracts ● Singularity Contracts /

Another Source of Leaks

q

!a

q

?a

⟨q,q, ε, ε⟩

Channel Contracts ● Singularity Contracts /

Another Source of Leaks

q

!a

q

?a

⟨q,q,a, ε⟩

Channel Contracts ● Singularity Contracts /

Another Source of Leaks

q

!a

q

?a

⟨q,q,aa, ε⟩

Channel Contracts ● Singularity Contracts /

Another Source of Leaks

q

!a

q

?a

⟨q,q,aaa, ε⟩

Channel Contracts ● Singularity Contracts /

Synchronising Contracts

Definition Synchronising state

A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

q q′

!a

!b

q q′

!a

?b

Definition Synchronising contract

A contract is synchronising if all its final states are.

Theorem [V., Lozes & Calcagno ’09]

Deterministic, positional and synchronising contracts are safe
(fault and leak free).

Channel Contracts ● Singularity Contracts /

Synchronising Contracts

Definition Synchronising state

A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.

Theorem [V., Lozes & Calcagno ’09]

Deterministic, positional and synchronising contracts are safe
(fault and leak free).

Channel Contracts ● Singularity Contracts /

Synchronising Contracts

Definition Synchronising state

A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.

Theorem [V., Lozes & Calcagno ’09]

Deterministic, positional and synchronising contracts are safe
(fault and leak free).

Channel Contracts ● Singularity Contracts /

Singularity Contracts

Definition Singularity contract

Singularity contracts are deterministic and all their states are
synchronising.

● This is missing the positional condition!
● Does not guarantee reception fault freedom
● In fact, we proved that safety is still undecidable for

deterministic or positional contracts.
● Positional Singularity contracts are safe and bounded.

Channel Contracts ● Singularity Contracts /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● Extension to
message passing

Separation Logic

Separation Logic [Reynolds 02, O’Hearn 01, . . .]

● An assertion language to describe states
● A proof system for Hoare triples

● Local reasoning for heap-manipulating programs
● Naturally describes ownership transfers
● Has been extended to storable locks [Gotsman et al. 07]

Proving Copyless Message Passing ● Assertions /

Assertions

Syntax

E ∶∶= x ∣ n ∈ {0,1,2, . . .} ∣ ⋯ expressions
φ ∶∶= E1 = E2 ∣ E1 ≠ E2 stack predicates

∣ emp ∣ E1 ↦ E2 heap predicates
∣ ∃x . φ ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∗ φ2 formulas

Proving Copyless Message Passing ● Assertions /

Assertion Language (extension)

Syntax (continued)
φ ∶∶= . . .

∣ E ↦ (C{q},E ′) endpoint predicate

Intuitively E ↦ (C{q},E ′) means:
● E is an allocated endpoint
● it is ruled by contract C
● it is currently in the control state q of C
● its peer is E ′

Proving Copyless Message Passing ● Assertions /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.
● Extends Smallfoot

with message
passing

● Written in OCaml

● Open source

[V., Lozes & Calcagno TACAS’10]

Proving Copyless Message Passing ● Demo /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● rules for message
passing

● message footprints

Operational Semantics

Memory States σ

A memory state σ has three components
● A variable valuation (stack)
● A heap for memory cells
● Buffers for endpoints

Semantics of programs

Small-step interleaving operational semantics for programs p:

p, σ →∗ p′, σ′ (intermediate state)
p, σ →∗ σ′ (final state)
p, σ →∗ error (error state)

Proving Copyless Message Passing ● Proof System /

Hoare Logic

{φ} p {ψ}: Hoare triple

● φ, ψ: formulas
● p: program

Fault-free interpretation of Hoare triples

If {φ} p {ψ} is provable, then for all state σ ⊧ φ,
1. p has no race or memory faults from σ

2. p implements its contracts
3. if p, σ →∗ σ′ then σ′ ⊧ ψ

Proof system

Derivation rules to prove Hoare triples.

Proving Copyless Message Passing ● Proof System /

Rules of the Proof System

SKIP ASSUME ASSIGN LOOKUP MUTATE

NEW DISPOSE SEQUENCE PARALLEL CHOICE

STAR LOCAL FRAME WEAKENING

CONJUNCTION DISJUNCTION EXISTENTIAL OPEN

CLOSE SEND CHANNELDISPATCH EXTCHOICE

Proving Copyless Message Passing ● Proof System /

Communication Rules

OPEN
i = init(C)

{emp} (e, f) = open(C) {e ↦ (C{i}, f) ∗ f ↦ (C{i},e)}

CLOSE
q ∈ finals(C)

{e ↦ (C{q}, f) ∗ f ↦ (˜C{q},e)} close(e, f) {emp}

SEND

q
!a
Ð→ q′ ∈ C e ↦ (C{q′},−) ∗ φ⇒ γa(e,x) ∗ φ′

{e ↦ (C{q},−) ∗ φ} send(a,e,x) {φ′}

RECEIVE

q
?a
Ð→ q′ ∈ C

{e ↦ (C{q},X ′)} x = receive(a,e) {e ↦ (C{q′},X ′) ∗ γa(X ′,x)}

Proving Copyless Message Passing ● Proof System /

Communication Rules

OPEN
i = init(C)

{emp} (e, f) = open(C) {e ↦ (C{i}, f) ∗ f ↦ (C{i},e)}

CLOSE
q ∈ finals(C)

{e ↦ (C{q}, f) ∗ f ↦ (˜C{q},e)} close(e, f) {emp}

SEND

q
!a
Ð→ q′ ∈ C e ↦ (C{q′},−) ∗ φ⇒ γa(e,x) ∗ φ′

{e ↦ (C{q},−) ∗ φ} send(a,e,x) {φ′}

RECEIVE

q
?a
Ð→ q′ ∈ C

{e ↦ (C{q},X ′)} x = receive(a,e) {e ↦ (C{q′},X ′) ∗ γa(X ′,x)}

Proving Copyless Message Passing ● Proof System /

Closing a Channel

CLOSE
q ∈ finals(C)

{e ↦ (C{q}, f) ∗ f ↦ (˜C{q},e)} close(e, f) {emp}

e f Ð→

Proving Copyless Message Passing ● Proof System /

Closing a Channel

CLOSE
q ∈ finals(C)

{e ↦ (C{q}, f) ∗ f ↦ (˜C{q},e)} close(e, f) {emp}

e f Ð→

Proving Copyless Message Passing ● Proof System /

General Rule for Receive

RECEIVE

q
?a
Ð→ q′ ∈ C

{e ↦ (C{q},X ′)} x = receive(a,e) {e ↦ (C{q′},X ′) ∗ γa(X ′,x)}

e Ð→ e γa

Can be instantiated for each example:

γ cell (src,val) ≜ val↦ −

γep(src,val) ≜ val↦ (C{end},−) ∧ val = src

Proving Copyless Message Passing ● Proof System /

General Rule for Receive

RECEIVE

q
?a
Ð→ q′ ∈ C

{e ↦ (C{q},X ′)} x = receive(a,e) {e ↦ (C{q′},X ′) ∗ γa(X ′,x)}

e Ð→ e γa

Can be instantiated for each example:

γcell (src,val) ≜ val↦ −

γep(src,val) ≜ val↦ (C{end},−) ∧ val = src

Proving Copyless Message Passing ● Proof System /

General Rule for Receive

RECEIVE

q
?a
Ð→ q′ ∈ C

{e ↦ (C{q},X ′)} x = receive(a,e) {e ↦ (C{q′},X ′) ∗ γa(X ′,x)}

e Ð→ e γa

Can be instantiated for each example:

γcell (src,val) ≜ val↦ −

γep(src,val) ≜ val↦ (C{end},−) ∧ val = src

Proving Copyless Message Passing ● Proof System /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

● soundness

Validity and Leak Freedom

Definition Program validity

{φ} p {ψ} is valid if, for all σ ⊧ φ
● p has no race or memory fault starting from σ

● p has no reception faults starting from σ

● if p, σ →∗ σ′ then σ′ ⊧ ψ

Definition Leak free programs

p is leak free if for all σ

p, σ →∗ σ′ implies that the heap and buffers of σ′ are empty

Proving Copyless Message Passing ● Soundness /

Properties of Proved Programs

Theorem Soundness

If {φ} p {ψ} is provable with reception fault free contracts
then {φ} p {ψ} is valid.

Theorem Leak freedom

If {φ} p {emp} is provable with leak free contracts then p is
leak free.

Proving Copyless Message Passing ● Soundness /

Conclusion

Contributions

Contracts

● Formalisation of contracts
● Automatic verification of contract properties

Program analysis

● First extension of separation logic to message passing
● Formalisation of heap-manipulating, message passing

programs with contracts
● Contracts and proofs collaborate to prove freedom from

reception errors and leaks
● Tool that integrates this analysis: Heap-Hop

Conclusion /

Perspectives

Contracts

● Prove progress for programs
● Extend to the multiparty case
● Enrich contracts with counters, non determinism, . . .

Automatic program verification

● Discover specs and message footprints
● Discover contracts
● Fully automated tool

Conclusion /

Heap-Hop

Program Proof SL+MP

+

Contracts Prop. Contracts

=

Program Prop.

	Copyless Message Passing
	Language Model
	Properties of Interest

	Channel Contracts
	Communicating Automata
	Contract Verification
	Singularity Contracts

	Proving Copyless Message Passing
	Assertions
	Demo
	Proof System
	Soundness

