
Tracking Heaps that Hop with Heap-Hop

Jules Villard1 Étienne Lozes1 Cristiano Calcagno2,3

1 LSV, ENS Cachan, CNRS 2 Monoidics Ltd 3 Imperial College, London

Abstract. Heap-Hop is a program prover for concurrent heap-manipulating pro-
grams that use Hoare monitors and message-passing synchronization. Programs
are annotated with pre and post-conditions and loop invariants, written in a frag-
ment of separation logic. Communications are governed by a form of session
types called contracts. Heap-Hop can prove safety and race-freedom and, thanks
to contracts, absence of memory leaks and deadlock-freedom. It has been used
in several case studies, including concurrent programs for copyless list transfer,
service provider protocols, and load-balancing parallel tree disposal.

1 Introduction

Copyless message passing is an alternative to lock-based concurrency. Unlike message-
passing in a context of distributed memory, copyless message passing programs can
lead to efficient implementations, as only pointers to the contents of the message in
memory are transferred. To avoid bugs, and in particular races, the programmer has to
make sure that the ownership of the heap region representing the content of a message
is lost upon sending.

Heap-Hop [1] is a program prover that checks concurrent programs that manipulate
the heap, in particular list and tree structures, and synchronize using Hoare monitors and
copyless message passing. Heap-Hop supports asynchronous communications on chan-
nels, each consisting of two endpoints which are dynamically allocated on the heap.
Each endpoint can send to, and receive from, the other endpoint (its peer). Endpoints
can be passed around as any other heap objects, and channels can be explicitly closed.
Upon closure, no message should be pending for either peer, as this would result in a
memory leak. Heap-Hop is based on verification conditions generation and checking,
so the user only has to provide pre and post-conditions and loop invariants.

The proof system used by Heap-Hop [9] is based on separation logic [7], a logic that
provides a local and modular analysis: the specification of a program p is small, in that
it focuses on the resources actually needed by p to execute correctly, hopefully leading
to concise proofs. The locality principle of separation logic is usually a strength, but
for message passing it is also a weakness, since memory leaks and progress properties
need to be checked on a global view of the program. To ensure these global properties,
we rely on contracts. Contracts are a form of session types [8], or communicating finite
state machines, that dictate which sequences of messages are admissible on a channel.

Heap-Hop provides strong guarantees: memory safety, meaning that the program
does not fault on memory accesses; race freedom; contract obedience; and compliance
★ The first two authors are partially supported by the french Agence Nationale de la Recherche

project PANDA, grant NR-09-BLAN-0169.



2 Jules Villard Étienne Lozes Cristiano Calcagno

with user specifications (pre- and postconditions). Moreover, depending on the con-
tract, Heap-Hop can also ensure deadlock-freedom and absence of memory leaks. We
tested Heap-Hop on several case studies, including concurrent programs for copyless
list transfer, service providers, communication protocols, and parallel tree disposal.

We first introduce the programming language and annotations with a few examples
of increasing complexity, and then give some insights on Heap-Hop’s internals. We
conclude with some related works.

2 Heap-Hop

Programming Language. In our setting, channels are bidirectional FIFO and always
consist of exactly two endpoints (e and f in the examples below). Communications are
asynchronous, sending never fails, and receiving may block until the right message has
arrived. The first argument of send/receive instructions is a message identifier which
indicates what kind of message is communicated, and the second one is the endpoint
that is used. Other arguments are optional depending on the number of parameters of
the message. open and close respectively allocate and deallocate a channel and its two
endpoints.1 open takes one parameter: the contract identifier explained below.

The following program, with logical annotations in square brackets, exchanges a
memory cell between two threads put and get by passing a message cell.

main() { local x,e,f; x=new(); (e,f)=open(C); put(e,x) || get(f); }
put(e,x) [e|->C{a} * x|->] { send(cell,e,x); } [e|->C{a}]
get(f) [f|->˜C{a}] { y = receive(cell,f); } [f|->˜C{a} * y|->]

The logical annotations are spatial conjunctions (∗) of “points to” predicates that denote
ownership of a cell (x 7→) or of an endpoint (e 7→ C{a} for contract C in state a).
Notice how the ownership of the cell is transferred from the precondition of put to the
postcondition of get. For Heap-Hop to accept this example, we will annotate the cell

message with the formula val 7→,2 to specify that the transmitted values corresponds
indeed to a cell, and we will define the contract C for the channel (e, f).

Contracts are finite state machines that describe the protocol followed by the chan-
nel, i.e. which sequences of sends and receives are admissible on the channel. A contract
C is written from one of the endpoints’ point-of-view, the other one following the dual
contract C̄ (˜C in source code), where sends ! and receives ? have been swapped.

Before giving a contract for the previous example, we make the example more in-
teresting by sending e over itself after sending x, so that get can then close the channel
(e, f). We need a second message close_me, whose invariant uses the special src vari-
able, which refers to the sending endpoint, just as val refers to the sent value.

message cell [val|->]
message close_me [val|->C{b} * val==src]
contract C { initial state a { !cell -> a; !close_me -> b; }

final state b {} }

1 We have chosen a close primitive where both ends of a channel are closed together.
2 A message can have several parameters, in which case they are referred to as val0, val1, . . .



Tracking Heaps that Hop with Heap-Hop 3

put(e,x) [e|->C{a} * x|->] {
send(cell,e,x);
send(close_me,e,e); } [emp]

get(f) [f|->˜C{a}] {
y = receive(cell,f);
ee = receive(close_me,f);
close(ee,f); } [y|->]

Notice how the postcondition of put is now emp (the empty heap). After the receive
of close_me, and with the help of its invariant, Heap-Hop can prove that e and f form
a channel and that they are both in the same final state, which permits the closing of
(e, f). This would not be the case had we omitted val = src in the invariant.

Let us give a final version of the program that sends a whole linked list starting
at x (denoted by list(x) in the annotations) cell-by-cell through the channel. Our con-
tract C already allows this: we can send an unbounded number of cells before we leave
the state a. get cannot know anymore when the close_me message will come, so a
switch receive between messages cell and close_me is used, which in general se-
lects either message from the receive queue, whichever comes first.
put(e,x) [e|->C{a} * list(x)] {
local t;
while(x != 0)
[e|->C{a} * list(x)] {
t = x->tl;
send(cell,e,x);
x = t; }

send(close_me,e,e); } [emp]

get(f) [f|->˜C{a}] {
local x, ee = 0;
while(ee == 0) [(†)] {

switch receive {
x=receive(cell,f): {dispose(x);}
ee=receive(close_me,f): {}

}}
close(ee,f); } [emp]

(†) ≜ if ee==0 then f|->˜C{a} else (ee|->C{b} * f|->˜C{b},pr:ee)3

A particularity of the copyless message passing setting is that doing the sending of
the cell before dereferencing x in the example above (i.e. placing the send(cell,e,x);
one line earlier) would result in a fault, as the cell pointed to by x is not owned by this
thread anymore after it has been sent.

Usage. Heap-Hop takes annotated programs as input, and outputs a diagnosis for every
function of the program: either a successful check, or an error report showing the in-
criminated program lines and formulas where the check failed. It also outputs a graph-
ical representation of the contracts declared in the file.

Contracts play a fundamental role in the analysis. Heap-Hop checks whether the
following three conditions hold:

Deterministic From every state of the contract, there should be at most one transition
labeled by a given message name and a given direction.

Positional Every state of the contract must allow either only sends or only receives.
Synch All cycles in the contract that go through a final state must contain at least one

send and one receive.

These conditions are sufficient to ensure the absence of memory leak on channel clos-
ure [9]; Heap-Hop will issue a warning if they are not met. If moreover there is only one
channel used in the whole program, without Hoare monitors, and if all switch receive

statements are exhaustive with respect to the contract, then the program is also guaran-
teed to be deadlock-free. Currently, Heap-Hop does not report on deadlock-freedom
since we expect simpler proofs of it to be available using other methods [6].

3 In f|->˜C{b},pr:ee, pr:ee means that ee is the peer of f .



4 Jules Villard Étienne Lozes Cristiano Calcagno

3 Internals

Heap-Hop is an extension of a previous tool called Smallfoot [2], and uses the same
principles: it first converts the annotated program into verification conditions, then
checks each condition by applying symbolic forward execution, eventually checking
that the computed symbolic heap entails the targeted one. However, in case of non-
deterministic contracts, fundamental changes are needed in the symbolic execution
mechanism. Consider the following example:

contract ND { initial state a { !m -> b; !m -> c; }
state b {} final state c {} }

foo() { (e,f) = open(ND); send(m,e); receive(m,f); close(e,f); }

Starting from state a, symbolic execution could then proceed to state b or c. Notice that
only the choice of state c, which is the final state, allows to close the channel in the end,
and this choice is not evident when the send is executed. For this reason, our symbolic
execution mechanism explores all the possibilities in parallel, by operating on sets of
symbolic heaps and pruning wrong choices along the way.

4 Related Work & Conclusion

As already mentioned, Heap-Hop is a Smallfoot extension based on a fully formalized
proof theory [9]. Another extension of Smallfoot is SmallfootRG [3], that combines
Separation Logic with Rely-Guarantee reasoning. Typical case studies of SmallfootRG
are non-blocking concurrent algorithms, but it does not support message passing.
Chalice [6] is a program prover that has been recently extended to support copyless mes-
sage passing, and allows to prove deadlock-freedom using credits and lock levels. Both
SmallfootRG and Chalice could encode our contracts and switch receive constructs,
but this encoding, as well as being tedious, would be incomplete for non-deterministic
contracts. SessionJ [5] and Sing# [4] are realistic programming languages that rely on
contracts. The Sing# compiler uses a static analyzer to check some restricted form of co-
pyless message-passing, but seemingly does not support ownership transfer of recursive
data structures.

References

1. http://www.lsv.ens-cachan.fr/∼villard/heaphop/.
2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular Automatic Assertion Check-

ing with Separation Logic. In FMCO 2005, volume 4111 of LNCS, pages 115–137, 2005.
3. C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular Safety Checking for Fine-Grained

Concurrency. LNCS, 4634:233, 2007.
4. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and S. Levi.

Language Support for Fast and Reliable Message-Based Communication in Singularity OS.
In EuroSys, 2006.

5. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In ECOOP 2008, pages 516–541.

http://www.lsv.ens-cachan.fr/~villard/heaphop/


Tracking Heaps that Hop with Heap-Hop 5

6. K. Rustan M. Leino, Peter Müller, and Jan Smans. Deadlock-free channels and locks. In
ESOP, volume 6012 of LNCS, pages 407–426. Springer, 2010.

7. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS 2002.
8. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-Based Language and Its Typing System.

LNCS, pages 398–398, 1994.
9. Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Message Passing. In

APLAS’09, volume 5904 of LNCS, pages 194–209, Seoul, Korea, 2009. Springer.


	Tracking Heaps that Hop with Heap-Hop
	Jules Villard Étienne Lozes Cristiano Calcagno

