Developments in Concurrent Kleene Algebra

Tony Hoare', Stephan van Staden?, Bernhard Moller3, Georg Struth?,
Jules Villard®, Huibiao Zhu®, and Peter O’Hearn”

! Microsoft Research, Cambridge, United Kingdom
2 ETH Zurich, Switzerland
3 Institut fiir Informatik, Universitit Augsburg, Germany
4 Department of Computer Science, The University of Sheffield, United Kingdom
5 Department of Computing, Imperial College London, United Kingdom
6 Software Engineering Institute, East China Normal University, China
" Facebook, United Kingdom

Abstract. This report summarises recent progress in the research of its
co-authors towards the construction of links between algebraic presen-
tations of the principles of programming and the exploitation of concur-
rency in modern programming practice. The research concentrates on the
construction of a realistic family of partial order models for Concurrent
Kleene Algebra (aka, the Laws of Programming). The main elements
of the model are objects and the events in which they engage. Further
primitive concepts are traces, errors and failures, and transferrable own-
ership. In terms of these we can define other concepts which have proved
useful in reasoning about concurrent programs, for example causal de-
pendency and independence, sequentiality and concurrency, allocation
and disposal, synchrony and asynchrony, sharing and locality, input and
output.

1 Introduction

Concurrency has many manifestations in computer system architecture of the
present day. It is provided in networks of distributed systems and mobile phones
on a world-wide scale; and on a microscopic scale, it is implemented in the multi-
core hardware of single computer chips. In addition to these differences of scale,
there are many essential differences in detail. As in other areas of basic scientific
research, we will initially postpone consideration of these differences, and try to
construct a mathematical model which captures the essence of concurrency at
every scale and in all its variety.

Concurrency also has many manifestations in modern computer programming
languages. It has been embedded into the structure of numerous new and ex-
perimental languages, and in languages for specialised applications, including
hardware design. It is provided in more widely used languages by a choice of
thread packages and concurrency libraries. Further variation is introduced by a
useful range of published concurrency design patterns, from which a software
architect can select one that reconciles the needs of a particular application with
the particular hardware available.

P. Hofner et al. (Eds.): RAMICS 2014, LNCS 8428, pp. 1-18, 2014.
© Springer International Publishing Switzerland 2014

2 T. Hoare et al.

Concurrency is also a pervasive phenomenon of the real world in which we
live. A general mathematical model of concurrency shares with the real world
the concept of an object engaging together with other objects in events that
occur at various points in space and at various instants in time. It also shares
the principle of causality, which states that no event can occur before an event
on which it causally depends, as well as a principle of separation, which states
that separate objects occupy separate regions of space. It is these principles
that guide definitions of sequential and concurrent composition of programs in
a model of CKA. They provide evidence for a claim that CKA is an algebraic
presentation of common-sense (non-metric) spatio-temporal reasoning, similar
to that formalised in various ancient and modern modal logics.

1.1 Domain of Discourse

The construction of a model of a set of algebraic laws consists of three tasks.
The first task is the definition of the domain of discourse (carrier set of the
algebra). Any element of the domain is a value that may be attributed to any
of the variables occurring in any of the laws. It is a mathematically defined
structure, describing at some level of abstraction the relevant aspects of the
real or conceptual world to which the algebra is applied. The second task is the
interpretation of each operator of the algebra as a mathematical function, with
its arguments and its result in the domain of discourse. Finally, there is the proof
that the laws of the algebra are true for any attribution of values in the domain
of discourse to all the variables in each of the equations.

It is instructive and convenient to introduce a series of three domains, each one
including all the elements of the next. The most comprehensive domain is that
of specifications, which describe properties and behaviour of a computer system
while executing a program. They may be desirable properties of programs that
are not yet written, or undesirable properties of a program that is still under
test. Formally, a specification is just a set containing traces of all executions
that satisfy the property. It may be expressed in any meaningful mathematical
notation, including arbitrary set unions, and arbitrary intersections, and even
complementation. A most important quality of a specification is that it should
be comprehensible; and therefore it should be accompanied by an informal ex-
planation that makes it so. That is a precept that we hope to follow in this
presentation.

The second domain consists of programs. A program can be regarded as a
precise description of the exact range of all its own possible behaviours when
executed by computer. It is expressed in a highly restricted notation, namely
its programming language. The language excludes negation and other operators
that are incomputable in the sense of Turing and Church. As a result, a program
text can be input directly by computer, and (after various mechanised transfor-
mations) it can be directly executed to cause the computer to produce just one of
the behaviours specified. Inefficiency of implementation is another good reason
for omission from a programming language of the more general operators useful
in a specification. For example, intersection is usually excluded, even though it

Developments in Concurrent Kleene Algebra 3

is the most useful operator for assembling large sets of design requirements into
a specification.

At the third level, a single trace, produced for example by a single program
test, describes just one particular execution of a particular program at a partic-
ular time on a particular computer system or network. The execution itself is
also modelled as a lower-level set, consisting of events that occurred during that
execution, including events in the real world environment immediately surround-
ing the computer system. A trace is effectively a singleton set in the domain of
programs, so it cannot be composed by union; but it can still be composed either
sequentially or concurrently with another trace, and (in our partial order model)
the result is still a single trace. The composition operators are easily proved to
satisfy the laws of CKA.

There is close analogy between this classification of domains for concurrent
programming and the classification of the standard number systems of arithmetic
- reals, rationals, and integers. For example, the operators of a programming
language share the same kind of elementary algebraic properties as arithmetic
operators - distribution, association and commutation, with units and zeroes.

The analogy can be pursued further: our modelling methods are also similar
to those used in the foundations of arithmetic. For example, the reals are defined
as downward-closed sets of rationals (Dedekind cuts). The operators at each level
are then defined in terms of the operators at the lower level. For example, an
operator like addition on reals is defined as the set obtained by adding each
rational from the first real operand to each rational from the second operand.
This construction is known as ‘lifting to sets’, and we will use it to lift individual
traces to the domain of programs and specifications that describe them.

The constructions at the foundations of arithmetic show that the operators of
all the number systems obey the same algebraic laws, or nearly so. Our models
are designed to do the same for the laws of programming, as expressed in a
Concurrent Kleene Algebra.

1.2 Contracts and Counterexamples

Models play an essential role in the development of theories and the practical
use of an algebra in mathematics. They provide evidence (a counterexample) for
the invalidity of an inaccurately formulated conjecture, explaining why it can
never be proved from a given set of algebraic laws. In pure logical and algebraic
research, such evidence proves the independence of each axiom of the algebra
from all the others. For purposes of counterexample generation, appropriate se-
lection from a family of simple models can be more useful and more efficient
than repeated use of a single realistic model that is more complicated. An expe-
rienced mathematician is familiar with a wide range of models, and selects the
one most likely to serve current purposes. However, the research reported here
seeks realism rather than simplicity of its model.

Discovery of counterexamples is also a primary role of models of programming.
A counterexample consists in a trace of program execution which contains an
error; it thereby demonstrates falsity of the conjecture that a program is correct.

4 T. Hoare et al.

An automatic test case generator should obviously concentrate on finding such
counterexamples. It should also indicate where the errors have been detected,
and where they cannot have occurred. The information should be provided in a
form that guides human judgement in diagnosing the error, tracing where it has
occurred, and deciding whether it should be corrected or worked around.

The definition of what counts as an error, and of where it is to be attributed,
can be formalised as a contract at the interface between one part of the program
and another. For each of its participants, a contract has two sides. One side is a
description of the obligations, which any of the other participants may expect to
be fulfilled. An example is the post-condition of a method body, which every call
of the method will rely on to be true afterwards. The other side is a description
of the requirements which each participant may expect of the behaviour of all
the other participants taken together. An example is the precondition of the
method body. Every calling program is required to make this true before the
call, and the method body may rely on this as an assumption.

In addition to violation of contracts, there are various kinds of generic error,
which are universally erroneous, independent of the purposes of the program. Ex-
amples familiar to sequential programmers are undefined operations, overflows,
and resource leakages. Concurrency has introduced into programming several
new classes of generic error, for example, deadlock, livelock, and races (inter-
ference). To deal with these errors, we need new kinds of contract, formulated
in terms of new concepts such as dependency, resource sharing, ownership, and
ownership transfer. We also need to specify dynamic interactions (by synchroni-
sation, input, or output) between a component of a concurrent program and its
surrounding environment.

A full formal definition (semantics) of a programming language will specify the
range of generic errors which programs in the language are liable to commit. The
semantics itself may be regarded as a kind of contract between the implementer
and the user of the language, and they will often allocate responsibility for errors
that occur in a running program. For example, syntax errors and violation of
type security are often avoided by compile-time checks, and the implementer
undertakes to ensure that a program which contains any such errors will not be
released for execution, even in a test.

Conversely, for certain intractable errors, the programmer must accept the
responsibility to avoid them. In the case of a violation occurring at run time,
the language definition may state explicitly that the implementer is freed of all
responsibility for what does or does not happen afterwards. For example, in
the case of deadlock, nothing more will happen. Or worse, the error may even
make the program susceptible to malware attack, with totally unpredictable and
usually unpleasant consequences.

The inclusion of contractual obligations in a model lends it an aspect of deontic
logic, which has no place in the normal pursuit of pure scientific knowledge.
However, it plays a vital role in engineering applications of the discoveries of
science.

Developments in Concurrent Kleene Algebra 5

1.3 Semantics

There are four well-known styles for formalising the definition of the meaning
of a programming language. They are denotational, algebraic, operational and
deductive (originally called axiomatic). They are all useful in defining a common
understanding for the design and exploitation of various software engineering
tools in an Integrated Development Environment (IDE), and for defining sound
contracts between them.

A model of the laws of programming plays the role of a denotational semantics
(due to Scott and Strachey) of a language which obeys the laws. The denota-
tion of each program component is a mathematical structure, which describes
program behaviour at a suitable level of abstraction. The first examples of such
a model were mathematical functions, mapping an input value to an output
value. Later examples included concurrent behaviour, modelled as sets of traces
of events. We follow the later examples, and extend them to support the discov-
ery and attribution of errors in a program. The denotations therefore provide a
conceptual basis for the design and implementation of testing tools, including
test case generators, test trace explorers, and error analysers.

The laws themselves present an algebraic semantics (advocated, for example
by Bergstra and his colleagues) of the same abstract programming language.
Algebra is useful in all forms of reasoning about programs, and the proofs are
often relatively simple, both for man and for machine. The most obvious example
is the use of algebra to validate the transformation of a program into one with
the same meaning, but with more efficient executions. An algebraic semantics
is therefore a good theoretical foundation for program translators, synthesisers
and optimisers.

The rules of an operational semantics (due to Plotkin and Milner) show how to
derive, from the text of a program plus its input data, the individual steps of just
a single execution of the program. This is exactly what any implementation of the
language has to do. The rules thereby provide a specification of the correctness of
more efficient methods of implementation, for example, by means of interpreters
written in the same or a different language, or compilers together with their
low-level run-time support.

The deductive semantics (attributed to Hoare) gives proof rules for construct-
ing a proof that a program is correct. Correctness means that no possible execu-
tion of the program contains an error. Some of the errors, like an overflow, a race
condition or a deadlock, are generic errors. Others are violations of some part of
a contract, for example an assertion, written in the program itself. A deductive
semantics is most suitable as a theoretical basis for program verifiers, analysers
and model checkers, whose function is to prove correctness of programs.

When the full range of tools, based on the four different formalisations of se-
mantics, are assembled into an IDE, it is obviously important that they should
be mutually consistent, and provably so. It is common for the tools to com-
municate with each other by passing annotated programs between them. The
programs are often expressed in a common verification-oriented intermediate
language like Boogie designed and implemented by Leino. The semantics of this

6 T. Hoare et al.

common language must obviously be rigorously formalised and understood by
the designers of all the tools. As described above, the semantics needs to be
formalised in different ways, to suit the purposes of different classes of tool. The
mutual consistency of all the forms of semantics establishes confidence in the
successful integration of the tools, by averting errors at the interface between
them. Ideally, this proof can be presented and checked, even before the individual
tools are written.

An easy way to prove consistency of two different formalisations is to prove
one of them on an assumption of the validity of the other. For example, Hoare
and Wehrman describe how the laws of the algebraic semantics can be derived
rather simply from a graphical denotational model. Similarly, Hoare and van
Staden show that the rules of the operational semantics, as well as the rules of
the deductive semantics, can be derived from the same algebraic laws of pro-
gramming. In combination, these proofs ensure that all the models of the laws
satisfy the rules of all three of the other kinds of semantics.

In fact, most of the laws can themselves be derived in the other direction,
either from the rules of the operational or from the rules of the deductive se-
mantics, or even from both. For example, the principal law of concurrency (the
exchange law) is derivable either from the deductive separation logic rules for
concurrency formalised by O’Hearn, or from the Milner transition rules which
define concurrency in CCS. This direction of derivation gives convincing evidence
that our laws for concurrency are consistent with well-established understanding
of the principles of concurrent programming. Similar mutual derivations are fa-
miliar from the study of propositional logic, where the rules of natural deduction
are derived from Boolean algebra, and vice versa.

2 The Laws of Programming

The laws of programming are an amalgam of laws obtained from many sources:
relational algebra (Tarski), regular languages (Kleene), process algebras (Brookes
and Roscoe, Milner, Bergstra), action algebra (Pratt) and Concurrent Kleene
Algebra (Hoare et al.). The pomset models of Gischer and others have also
provided inspiration.

An earlier introduction to the laws for sequential programming is (Hoare et
al., Laws of Programming). This was written for general computer scientists
and professional software developers. It contains simple proofs that the laws
are satisfied by a relational model of program execution. Unfortunately, the
relational model does not extend easily to concurrency.

The purpose of this section is to list a comprehensive (but not complete) selec-
tion of the laws applicable to concurrent programming. The laws are motivated
informally by describing their consequences and utility. The informal description
of the operators gives the most general meaning of each of them, when applied
to programs and specifications. Several of them do not apply to traces.

The model described in section 3 offers a choice of definitions for many of the
operators. Any combination of the choices will satisfy the laws. The choice is

Developments in Concurrent Kleene Algebra 7

usually made by a programming language definition; but in principle, the choice
could be left as a parameter of an individual test run of a program.

2.1 The Basic Operators

Basic Commands
1 (skip) does nothing, because there is nothing it has been asked to do.

T is a program whose behaviour is totally undetermined. For example, it might
be under control of an undetected virus. Other names for this behaviour are
abort (Dijkstra), CHAOS (in CSP) and havoc in Boogie.

1 is a program with no executions. For example, it might contain a type error,
which the compiler is required to detect. As a result, the program is prevented
from running.

Binary Operators

Sequential composition p; q executes both p and ¢, where p can finish before ¢
starts. It is associative with unit 1, and has L as zero.

Concurrent composition p|q executes both p and ¢, where p and ¢ can start
together, proceed together with mutual interactions, and finally they can finish
together. The operator is associative and commutative with unit 1 , and has L
as zero.

Choice (p U q) executes just one of p or q. The choice may be determined or
influenced by the environment, or it may be left wholly indeterminate. The op-
erator is associative, commutative and idempotent, with 1 as unit.

Refinement

The refinement relation p = ¢ is reflexive and transitive, i.e., a pre-order. It
means that p is comparable to ¢ in some relevant respect. For example, p may
have less traces, so its behaviour is more deterministic than ¢, and therefore eas-
ier to predict and control. The three operators listed above are covariant (also
called monotone or isotone) in both arguments with respect to this ordering.
The ordering has 1 as bottom, T as top and U as lub. For further explanation
of refinement, see section 2.2.

Distribution
All three binary operators distribute through choice.

Sequential and concurrent composition distribute through each other, as de-
scribed by the following analogue of the exchange (or interchange) law of Cate-
gory Theory:

(rla); @' |d) = (p;p)|(g;4d)

For further explanation of the exchange law, see section 2.3.

8 T. Hoare et al.

Iterations

The sequential iteration px performs a finite sequential repetition of p, zero or
more times.

The concurrent iteration p! performs a finite concurrent repetition of p , zero or
more times.

Residuals

The weakest precondition ¢ -; r (Dijkstra) is the most general specification of
a program p which can be executed before ¢ in order to satisfy specification
r. The weakest precondition consequently cancels sequential composition (and
vice-versa), but the cancellation is only approximate in the refinement ordering;:

(g57);q=r and p= (q-(p;q))

The specification statement p ;- r (due to Back and Morgan) is the most gen-
eral specification of a program ¢ that can be executed after p in order to satisfy
specification r.

p-| r the magic wand (due to O’Hearn and Pym) is similar to the above for
concurrent composition.

Notes:

1. the result of the residuals is a specification rather than a program. Residuals
are in general incomputable. That is why the residual operations are excluded
from programming languages.

2. The constants T and L , and the operators of iteration and choice, are not
available in the algebra of traces.

2.2 Refinement

The refinement relation p = ¢ expresses an engineering judgement, comparing
the quality of two products p and ¢. By convention, the better product is on the
left, and the worse one on the right. For example, the better operand p on the
left may be a program with less possible executions than q. Consequently, if ¢
is also a program, it is more non-deterministic than p, and so more difficult to
predict and control. If p is a program and ¢ is a specification, the refinement
relation means that p meets the specification ¢, in the sense that everything that
p can do is described by the specification ¢q. And if they are both specifications,
it means that p logically implies q. Consequently p places stronger constraints
on an implementation, which can be more difficult to meet.

Refinement between programs may also account for failures and errors. For
example, if p is a program that has the same observable behaviour as ¢ , but ¢
contains a generic programming error that is not present in p, this may be the
grounds for a judgment that p refines ¢. In other words, a program can be im-
proved by removing its programming errors, but otherwise leaving its behaviour
unchanged. Dually, if p is a specification, it is made weaker (easier to meet)

Developments in Concurrent Kleene Algebra 9

by strengthening the obligation which it places on its environment. Thus the
meaning of refinement is relative to the contracts between the components of a
program, and between the whole program and its environment.

A more precise interpretation for refinement is usually made in a programming
language definition. But a testing tool might allow the definition to be changed,
to reflect exactly the purposes of each test.

2.3 The Exchange Law: (p|q); (p'|q") = (p;p’) (a5 ')

The purpose of this law is made clear by describing its consequences, which
are to relate a concurrent composition to one of its possible implementations
by interleaving. The law also permits events to occur concurrently, and requires
dependent events like input output to occur in the right order. Inspection of
the form of the law shows that the left hand side of the law describes a sub-
set of the possible interleavings of the atomic actions from the two component
threads (p; p’) and (q; ¢') on the right hand side. This subset results from a
scheduling decision that the two semicolons shown on the right hand side will
be ‘synchronised’ as the single semicolon on the left.

The algorithm for finding an interleaving uses the recursive principle of ‘divide-
and conquer’. The interleavings (p | ¢) before the semicolon on the left are formed
from the two first operands p and q of the two semicolons on the right. The inter-
leavings (p’ | ¢’) after the semicolon on the left are formed from the two second
operands p’ and ¢’ of the two semicolons on the right. Every execution of the left
hand side is the sequential composition of a pair of executions, one from each
of (p|q) and (p'|¢’). Each such execution achieves synchronisation of the two
semicolons on the right, but it places no other constraint on the interleavings.
(The constraints are specified in the definition of sequential composition).

By introduction and elimination of the unit 1, the exchange law can be
adapted to cases where the term to be transformed has only two or three
operands. The following three theorems are called frame laws:

p;qa=plq (frame law 0)
pi(alr) = (p;a)r (frame law 1)
(plg);r=pl(g;r) (frame law 2)

By commuting the operands of concurrent composition, the first frame law gives
a weak principle of sequential consistency:

q;p=Dplq, from which, by covariance and idempotence,
a;p Upia=rplg

If p and ¢ are atomic commands, then the left hand side of the above conclusion
shows the only two possible interleavings of their concurrent combination on the
right hand side. A strong principle of sequential consistency would allow the
conclusion to be strengthened to an equation (but only in the case of atomic

10 T. Hoare et al.

commands). However, we will continue to exploit the weaker formulation of the
principle.

When there are larger numbers of atomic commands in a formula, the ex-
change law can be used, in conjunction with commutation, association and dis-
tribution, to reduce the formula to a normal form in which the outer operator
is union and the inner operator is sequential composition. The technique is to
use the exchange law to drive the occurrences of concurrent composition to the
atoms, and then apply the weak principle of sequential consistency given above.

For example, from the frame laws we get:

p;(gsr Ursq)=(;q|r and (p;r Ursp);q=r[(p;q)

By commutation, distribution, covariance and idempotence, we can combine
these to an analogue of Milner’s expansion theorem for CCS:

piqir UpiriqUripig=(piq)|r

This theorem remains valid when there are synchronised interactions between
the concurrent commands. When an interleaving ---p; q; - - - violates a synchro-
nisation constraint that p must follow ¢, the definition of sequential composition
will ensure that this interleaving takes the value 1, which is the unit of choice.
This particular interleaving is thereby excluded from the left hand side of the
theorem.

3 A Diagrammatic Model

The natural sciences often model a real-world system as a diagram (graph) drawn
in two dimensions: a space dimension extends up and down the vertical axis, and
a time dimension extends along the horizontal axis. We model what happens
inside a computer in the same way. The fundamental components of the model
are objects, which are represented by lines (trajectories) drawn from left to right
on the diagram. An object has a unique identifier (name or address) associated
with it at its allocation. This may be used just like a numeric value in assignments
and communications.

Examples of objects are variables (local or shared), semaphores (for exclusion
or synchronisation), communication channels (buffered or synchronised), and
threads. These classes of object are often built into a programming language;
but in an object-oriented language they can be supplemented by programmed
class declarations.

The lines representing two or more objects may intersect at a point, which
represents an atomic event or action in which the given objects participate si-
multaneously. Examples of events are allocations and disposals of an object,
assignments or fetches of a variable, input or output of a message, seizures or
releases of a semaphore, and forking or joining of threads. An example of mul-
tiple participation is an atomic assignment, which involves fetches from many
variables and assignments to one or more target variables, together with the
thread that contains the assignment.

Developments in Concurrent Kleene Algebra 11

The line for each object passes through the time-ordered sequence of events in
which the object engages. In the case of a thread object, the ordering of events
within a thread is often called program order. It seems reasonable to require
that no event can occur without participation of exactly one thread.

In the diagram for a Petri net, an event is drawn as a transition, in the form
of a box or a bold vertical line. Extending the same convention, we will represent
participation of an object in the transition as a line which passes straight through
the transition. This contrasts with an allocation of a new object whose line begins
at the transition, or with a disposal in the case of a line which ends at it. The
other Petri net component (a place) represents choice; it is therefore not needed
in the diagram for a single trace, for which all choices have already been made.

An arrow is defined as a pair of consecutive points on the same line. It is drawn
with its source on the left and its target on the right. An arrow is labelled by a
primitive constant predicate of an assertion language. For example, in standard
separation logic, the primitive is a pair written (say) 101|— 27, where the
constant 101 is the unique identifier of the object, and 27 is the value that is
held by the object between the event at the source of the arrow and the event
at its target.

Arrows are classified as either local or global. The source and target of a local
arrow must be events that involve the same thread, called its current owner:
violation of this rule of locality is an error. In a language like occam, the compiler
is responsible for detecting this error, and making sure that the program is not
executed. However in a language like C this check would be too difficult, and
it is not required. Instead, violation of locality is attributed as an error of the
program.

An object is defined to be local if all its arrows are local, and volatile (shared)
if all its arrows are global. An object with both kinds of arrow is one whose
ownership may change between the event at the tail and the event at the head
of any one of its global arrows. The distinction between local and global arrows
is familiar from Message Sequence Charts. The local arrows representing concur-
rent tasks are drawn downwards, and global arrows are drawn between points
on the vertical lines. The points represent calls, call-backs, returns, and other
communications between the tasks.

In a diagram of program execution, an instant of time (real or virtual) can be
drawn as a vertical coordinate which crosses just one arrow in the line for each
object that is allocated but not yet disposed at that instant. The collection of
labels on the arrows which cross a vertical coordinate describes the state of the
entire system at the given instant. A global arrow denotes a message which has
been buffered between the tail event of the arrow and its head. An arrow of a
volatile object is effectively a special case of a message. A local arrow crossing
the coordinate represents the value held in the computer memory allocated to
the owning object. The state of the entire local memory at the relevant instant
is the relation whose pairs are (loc, val), where the label on the crossing arrow is
loc | wal. This is necessarily a function, because no line can cross a coordinate
twice: that would involve a backward crossing somewhere in between.

12 T. Hoare et al.

In a diagram of program execution, a point in space can be drawn as a hor-
izontal coordinate separating the threads above it from the threads below it.
The set of global arrows which cross the coordinate in either direction give a
complete account of the dynamic interactions between the threads that reside
on either side of the coordinate. They must all be global arrows. There is no
significance attached to the vertical ordering of the horizontal coordinates. That
is why concurrent composition commutes.

The important concept of causal dependency (happens before) is defined in
terms of arrows. A causal chain is a sequence of arrows (taken usually from
different object lines), in which the head of each arrow is the same point as
the tail of the next arrow (if any). Occurrence of an event on a causal chain is a
(necessary) cause of all subsequent events on the same chain; and it is dependent
on all earlier events on the chain. Obviously, no event can occur before an event
which it depends on, or after an event that depends on it. This is represented
by the left-to-right direction of drawing the arrows.

In summary, the primitive concepts of our geometry are lines and points at
which the lines meet. Arrows are defined and classified as local or global, and
they are given labels. In terms of these primitives we define vertical and horizon-
tal coordinates, system state, ownership and transfer of ownership, and causal
dependency. The concept of synchrony can be defined as mutual dependency,
and the concept of ‘true’ concurrency can be defined in the usual way as causal
independence.

3.1 Decomposition of Diagrams

A diagram in plane geometry can be decomposed into segments in two ways,
either horizontally or vertically. A horizontal segment (slice) contains the entire
lines of a group of related objects, which interact by participating jointly with
each other in their events. This segmentation is useful in analysing the behaviour
of individual objects from the same class, or groups of interacting objects from
the same package of classes.

A vertical segment is similarly separated from its left and right neighbours by
two vertical coordinates, representing the initial and the final instants of time.
The segment contains all events in the diagram which occurred between the
two instants. This form of segmentation is useful in analysing everything that
happens during a particular phase in the execution, for example, a method call.

A third form of decomposition mirrors the syntactic structure of the program
whose execution is recorded in a trace. Each segment (called a tracelet) contains
all the events that occurred during execution of one of the branches of the
abstract syntax tree of the program; the tracelets for two syntactically disjoint
commands of the program will have disjoint sets of events, as they do in reality.

Inside a diagram, the tracelet is surrounded by a perimeter, with vertical and
horizontal sides. The west and east sides of the perimeter are segments from
two vertical coordinates, and the north and south sides are segments of two
horizontal coordinates. Consequently, the tracelet for a sequential composition
p; q is split vertically into two smaller tracelets, one for p and one for ¢, with

Developments in Concurrent Kleene Algebra 13

no dependency of any event in p on any event in ¢; similarly, the tracelet for a
concurrent composition is split horizontally, with no local arrows crossing the
split. The whole plane is tiled by these splits, like a crazy paving. The tiles are
often drawn as rectangles, but this is not necessary.

An arrow with its source outside the box and its target inside is defined as
an input arrow; and an output arrow is defined similarly. The local input arrows
represent the portion of local state (called the initial statelet) which is passed
to the tracelet on entry. By convention, these arrows enter the box on the west
side. Similarly, the local output arrows represent the final statelet, and leave
the box on the right side. The global arrows may cross the north or the south
sides of the box, as convenient. They represent dynamic interactions that take
place with the environment of the tracelet between the start and the finish of its
execution.

A fourth form of segmentation splits a tracelet into three segments, shar-
ing just a single event. One segment contains all events that the shared event
causally depends on. A second segment contains all events that depend on the
shared event; and the remaining segment contains all remaining events, which
are irrelevant to its occurrence.

The diagrammatic representation of the trace described in this section is in-
tended to be helpful to the user of a visual debugging tool, by conveying an
understanding of what has gone wrong in a failed test, and what can be done
about it. For example, the segmentation into tracelets will give the closest pos-
sible indication of where in the source program an error has been detected. In a
visual tool, a hover of the mouse on the perimeter of the tracelet should highlight
the command in the original source program whose execution is recorded in the
tracelet.

Similarly, the causal segmentation gives clear access to the events which may
have caused the error: to prevent the error, at least one of these will have to be
changed. When the culprit has been detected and corrected, the segment that
is dependent on it contains all the events that may have been affected by the
change. The remaining events in the third segment that are causally independent
of the error could be greyed out on a display of the trace.

3.2 Refinement

We represent an error that is detected inside a tracelet by colouring its perimeter.
We attribute the errors as described in section 2.2. If the error is attributed to
the program being executed, the perimeter is drawn in red, or if it is attributed
to the environment of the tracelet, it is marked blue. Where necessary, a single
point can be coloured. For example, evaluation of an assertion to false is marked
red, whereas a false assumption is marked blue. If no error is detected, a normal
black perimeter is drawn. A black perimeter with no points inside represents the
execution of the SKIP command, which literally does nothing.

The refinement relation p = ¢ between tracelets p and ¢ is defined by looking
only at their events, and also at the colour of their two perimeters. The definition
deliberately ignores the internal structure of tracelets within p or ¢. Validity of

14 T. Hoare et al.

the refinement means that the diagram of one operand are just an isomorphic
copy of the diagram in the other, and that the perimeter of p has a lower colour
than that of ¢ in the natural ordering, with blue below black and red above
it. The definition of the isomorphism can be weakened by ignoring much of the
internal content of the tracelet. However, the labels on the arrows that cross
the perimeter must be preserved, and so must the causal dependencies between
these arrows.

The laws of programming require observance of the following principles in
colouring of perimeters. The first three principles state the obvious fact that a
tracelet inherits all the errors that are contained in any of its subtracelets; but
if it contains both a red and a blue error, a somewhat arbitrary decision states
that the blue dominates. This is required by the zero laws for L: it is certainly
justified when the bottom denotes a program with no executions.

1. If a tracelet contains a tracelet with a blue perimeter, it also has a blue
perimeter.

2. Otherwise, if it contains a tracelet with a red perimeter, it also has a red
perimeter.

3. Otherwise, both operands are black, and the whole tracelet has a black
perimeter too.

Further rules are introduced in the definition of the two composition operators.

4. Any failure to observe the rules of sequential composition colours the perime-
ter blue.

5. Any failure to observe the rules of concurrent composition colours the perime-
ter red, except in the case that principle 1 requires it to be blue.

There is a choice of reasonable meanings for sequential composition. In the
strongest variant, every event of the second operand must be dependent on every
event of the first operand. This is an appropriate definition for sequential com-
positions which occur within a single thread. In most programming languages,
this is the only kind of sequential composition that can be written in the pro-
gram. But if strong composition is applied to a multi-threaded trace, it requires
that all the threads pass the semicolon together, as in PRAM model of lock-step
program execution.

The weakest variant of sequential composition involves the minimum of syn-
chronisation. The principle is simply that no event of the first operand can
depend on any event of the second operand. Violation of this principle would
make it impossible to complete execution of the first operand before the second
operand starts: this was quoted informally in section 2 as the general defining
condition for sequential composition.

This definition is weak enough to allow the reordering optimisations that are
commonly made in modern compilers for widely used languages. When applied
to multi-threaded programs, it allows each thread to pass the semicolon at a
different time.

Turning to concurrent composition, its weakest definition imposes only the
condition that no local arrow can cross its north or south sides. A more realistic

Developments in Concurrent Kleene Algebra 15

definition has to make the occurrence of deadlock into a programming error.
More formally, the condition states that there is no dependency cycle that crosses
from an event of one operand to an event of the other. An exception may be made
to allow synchronised communication between an outputting and an inputting
thread, as in CSP.

The principle that a local arrow cannot cross between threads ensures that
in any correct trace there is no interference by one thread with the values of
a local variable of another thread. Thus separation logic is a valid method of
reasoning about concurrent programs, even in the presence of extra features
like synchronisation, atomicity, and communication. This claim still needs to be
checked in detail.

That concludes our informal description of a diagrammatic model for the
algebra of traces. Our description has been analytic (decompositional). It is
presented as a set of principles that are applied to test whether a given fully
decomposed and annotated trace has been correctly decomposed, and whether
its errors have been correctly attributed, according to the five principles above.
This is in contrast to the usual approach of denotational semantics, which is
compositional (synthetic): the denotation of the result of each operation is fully
defined in terms of the denotations of its operands. The contrast between the
decompositional and compositional interpretations is similar to the analytic and
synthetic readings of a set of recursive syntactic equations of a context-free
language.

The problem with such denotational definitions is that they are too prescrip-
tive of all the details of the model. This is because every needed property of every
aspect of the operator has to be deducible from its definition. In a decomposi-
tional presentation, each aspect of an operator can be described separately, and
as weakly as desired. Indeed, the weakness is often desirable, because interesting
variations of the operator can be identified, classified, and left for later choice.

The problem with the analytic approach is to decide when enough principles
have been given. We suggest that the relevant criterion is simply that all the
laws of programming are provably satisfied by the given collection of principles.
Section 1.3 has presented evidence that the laws are sufficient as a foundation
for reasoning about programs, and for the design of programming tools, which
analyse, implement and verify them.

4 Sketch of a Formal CKA Model

4.1 Graphs and Tracelets

Definition 4.1. Given a set EV of events and a set AR of arrows, a graph
is a structure H = (E, A, s,t) where E C EV, A C AR and s,t : A — FE
are total functions yielding source and target of an arrow. A tracelet is a pair
tr = (H,F) where H = (E, A, s,t) is a graph, called the overall trace, and F C F
is a distinguished set of events, called the focus of tr and denoted by foc(tr).

16 T. Hoare et al.

The pairwise disjoint sets of input, output and internal arrows of the tracelet
are given by
a € m(tr) g tla) € F A s(a) ¢ F
a € out(tr) <qr s(a) € F A tla) ¢ F
a € int(tr) <4 s(a) € F A tla) € F .

As mentioned in Section 3, arrows are classified as local and global, but in
this section we ignore the distinction.

We want to combine tracelets by connecting outputs of one tracelet to inputs
of another. For separation we require the events of ¢r; and tro to be disjoint.
Moreover, the combination is meaningful only if both tracelets have the same
overall trace. More precisely, consider tracelets try, tro with disjoint focuses but
same overall trace H, and an arrow a in out(try) Nin(tre). Then a is automati-
cally an internal arrow of the tracelet (H, foc(tr1) U foc(try)). If a carries values
of some kind, we view the combination as transferring these values from the
source event of a in ¢ry to the target event of @ in trs.

Definition 4.2. Two tracelets try, trq are combinable if Hy = Hy and foc(tri)N
foc(tre) = 0. Then their join is trq Utre =4 (Hy, Fy UFy). Clearly, trq U try is
a tracelet again.

Since disjoint union is associative, also U is associative. In the set of all
tracelets with a common overall trace H the empty tracelet O =4 (H,0)
with empty focus is the unit of LI

4.2 Tracelets and Colours

In Sect. 3.2 we have presented the idea of accounting for errors by colours.
Formally we use tiles, i.e. pairs (¢p,c) with a tracelet {p and a colour c¢. For
abbreviation we represent the colours red, black and blue by the values 1,1, T
ordered by 1 <1< T.

For combining scores, we use the summary operator o defined by

oL1T
the table at the right. Obviously, this operator is commutative and
. . . C . , 1L11
idempotent and has 1 as its unit which is indivisible, i.e., co ¢ =1 LT
implies ¢ = 1 = ¢/. The operator is also covariant w.r.t. <. Finally, S

it is also associative since it coincides with the supremum operator
on the lattice induced by the second ordering 1 < T < 1 (we are not going to
use that ordering any further, though).

The refinement relation, a partial order between tiles, is given by

(pc) = () eggp=p N

Tiles are composed by joining their tracelet parts and summarising their
colours together with additional error information the joined trace may provide.
For sequential and parallel composition ; and | this information is computed by
two operators | and T mapping pairs of traces to colours.

Developments in Concurrent Kleene Algebra 17

We can realise | and 1 using binary relations R, R’ that must hold between
the events of joined traces. For combinable traces p, g we set

Lif foc(p) x foc(q) € R, Lif foc(p) x foc(q) € R’ ,
1 otherwise , T otherwise .

plq =ar { pTq =ar {

Here R and R’ are any of the relations listed for sequential and parallel compo-
sition, respectively, at the end of Section 3.

By definition, these operators satisfy plq¢ < 1 and 1 < pTgq. Moreover, 1
is commutative. Using the indivisibility of 1 one sees that | and 1 distribute
through trace join, i.e., (pUq)lr =plr o glr etc.

Definition 4.3. Sequential and parallel composition of tiles with combinable
traces are defined as follows:

(p,s); (0',8') =af (pUDP, 505 oplp),
(p,s) | (',s") =ar (PUP', 508 0optp').

Theorem 4.4. The operators ; and | are associative and | is commutative.
Moreover they satisfy the frame and exchange laws. Under the additional as-
sumptions O Lp =1 =pl 0y = p1t 0y, the tile (On,1) is a shared unit of ;
and | in the set of all tracelets with common overall trace H.

The latter assumptions mean that the empty tracelet is error-free, which is
reasonable. By this Theorem we have provided a recipe for constructing specific
models to meet specific purposes, with a prior guarantee that the model will
satisfy the laws.

4.3 Programs and Lifting

A program is a set of tiles that is downward closed w.r.t. refinement = .

We already have presented the idea that operators on programs should arise
by pointwise lifting of the corresponding operators on tiles. Of course, this makes
sense only if also the laws for tiles lift to programs.

A sufficient condition for this is bilinearity, viz. that every variable occurs
exactly once on both sides of the law. Examples are associativity, commutativity
and neutrality in the case of equations and the frame and exchange laws in the
case of refinement laws.

While it is clear what equality means for programs, i.e., downward closed
sets of tiles, there are several ways to extend refinement to sets. We choose the
following definition:

p=9p iff Vtep:Itcp:t=1.

By this, a program p refines a specification p’ if each of its tiles refines a tile
admitted by the specification. Downward closure implies that = in fact coincides
with inclusion C between programs. Hence the set of programs forms a complete

18 T. Hoare et al.

lattice w.r.t. the inclusion ordering; it has been called the Hoare power domain
in the theory of denotational semantics.

The operators at the tile level can be lifted to downward closed sets by
forming all possible combinations of the tiles in the operands and closing the
result set downward. For instance, p ; p’ is defined as the downward closure
de({t;t' |t € p,t' € p'}) =4 {r|r = t;t for somet € p,t' € p'}, and anal-
ogously for the other operators. The lifted versions of covariant tile operators
are covariant again, but even distribute through arbitrary unions of programs.
Therefore, by the Tarski-Knaster fixed point theorem, recursion equations have
least and greatest solutions.

Moreover, it can be shown that with this construction bilinear refinement laws
lift to programs. We illustrate this for the case of the frame law p;p’ = p|p'.

Assume r € p; p’. By the above definition there are t € p,t’ € p’ such that
r = t;t. Since the frame law holds at the tile level, we have ¢t ;¢ = ¢|¢.
Moreover, t | t' is in de({t |t' |t € p,t’ € p'}) =p|p’ and we are done.

By this and the second part of Theorem 4.4 the program

1 =4 de({(Om,1) | H a graph})

is a shared unit of the liftings of ; and | to programs.

4.4 Residuals

By the distributivity of lifted covariant operators and completeness of the lat-
tice of downward closed programs the residuals mentioned in Section 2.1 are
guaranteed to exist. They can be defined by the Galois connections

p=q-r it p;g=r,
q=p;-r ff p;qg=r.

This independent characterisation is necessary, since these operators cannot rea-
sonably be defined as the liftings of corresponding ones at the tile level. An anal-
ogous definition can be given for the magic wand -|. The semi-cancellation laws
of Section 2.1 are immediate consequences of these definitions. Residuals enjoy
many more useful properties, but we forego the details.

	Developments in Concurrent Kleene Algebra
	1 Introduction
	1.1 Domain of Discourse
	1.2 Contracts and Counterexamples
	1.3 Semantics

	2 The Laws of Programming
	2.1 The Basic Operators
	2.2 Refinement
	2.3 The Exchange Law: (p | q) ; (p� | q�) ⇒ (p ; p�) | (q ; q�)

	3 A Diagrammatic Model
	3.1 Decomposition of Diagrams
	3.2 Refinement

	4 Sketch
of a Formal CKA Model
	4.1 Graphs and Tracelets
	4.2 Tracelets and Colours
	4.3 Programs and Lifting
	4.4 Residuals

