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Abstract

We formulate and investigate a bi-intuitionistic extension, BiBBI, of the well known
bunched logic Boolean BI (BBI), obtained by combining classical logic with full intu-

itionistic linear logic as considered by Hyland and de Paiva (as opposed to standard
multiplicative intuitionistic linear logic). Thus, in addition to the multiplicative conjunc-
tion ∗ with its adjoint implication —∗ and unit ⊤∗, which are provided by BBI, our logic
also features an intuitionistic multiplicative disjunction ∗∨, with its adjoint co-implication
∗\ and unit ⊥∗. “Intuitionism” for the multiplicatives means here that disjunction and
conjunction are related by a weak distribution principle, rather than by De Morgan equiv-
alence.

We formulate a Kripke semantics for BiBBI in which all the above multiplicatives
are given an intuitionistic reading in terms of resource operations. Our main theoretical
result is that validity according to this semantics exactly coincides with provability in our
logic, given by a standard Hilbert-style axiomatic proof system. In particular, we isolate
the Kripke frame conditions corresponding to various natural logical principles of FILL,
which allows us to present soundness and completeness results that are modular with
respect to the inclusion or otherwise of these axioms in the logic. Completeness follows
by embedding BiBBI into a suitable modal logic and employing the famous Sahlqvist
completeness theorem.

We also investigate the Kripke models of BiBBI in some detail, chiefly in the hope that
BiBBI might be used (like BBI) to underpin program verification applications based on
separation logic. Interestingly, it turns out that the heap-like memory models of separation
logic are also models of BiBBI, in which disjunction can be interpreted using a natural
notion of heap intersection.



1 Introduction

Bunched logics, which can be understood as an orthogonal combination of some variant of stan-
dard propositional logic with some variant of multiplicative linear logic [3, 23], have applications
in computer science as a means of expressing and manipulating properties of resource [21, 24, 4].
Most notably, separation logic [25], which has been successfully employed in large-scale program
verification [7, 26, 13] is based upon the bunched logic Boolean BI (from now on BBI) obtained
by combining ordinary classical logic with multiplicative intuitionistic linear logic (from now on
MILL) [12].

BBI has a very simple and appealing Kripke frame semantics: a model of BBI is simply
a certain type of (relational) commutative monoid, and a formula can then be read directly
in such a model as a subset of its elements, typically understood as abstract resources. The
classical connectives have their usual meanings, and the multiplicative MILL connectives (called
multiplicative) are given “resource composition” readings: A multiplicative conjunction of for-
mulas A ∗B denotes those elements which divide, via the monoid operation, into two elements
satisfying A and B respectively. (In separation logic, ∗ expresses the division of heap memories
into two disjoint pieces.) The unit ⊤∗ of ∗ denotes the set of units of the monoid, and an
implication (or “magic wand”) A —∗ B denotes those elements that, when extended with an
element satisfying A, always yield an element satisfying B.

For some time following the inception of bunched logic it was unclear whether multiplicative
analogues of other standard logical connectives — particularly disjunction and negation — could
be given a similarly intuitive (and non-trivial) resource interpretation. A first positive answer
to this question came in the form of a complete frame semantics for Classical BI (CBI) [4],
given by extending classical logic with multiplicative (classical) linear logic (MLL) rather than
MILL. Thus in CBI, as in MLL, the multiplicative connectives are related by the expected de
Morgan equivalences. These strong proof-theoretic equivalences have a model-theoretic corre-
late: CBI-models are BBI-models in which every element of the monoid has a unique “dual”
(in a certain technical sense). It is easy to find BBI-models in which such duals do not exist,
and in fact CBI is nonconservative over BBI. In particular, the heap-like models employed
in separation logic are not models of CBI, which unfortunately rules out using the convenient
logical symmetries of CBI to reason about separation logic over these models. This leaves open
the question of whether there might be bunched logics sitting in between BBI and CBI in which
multiplicative disjunction, negation etc. are interpretable but do not obey the de Morgan laws
of MLL. Additionally, one could ask whether any putative such logic might be used to reason
about heap-like models, and thus might have potential applications to separation logic.

In this paper, we give positive answers to both of the aforementioned questions by formu-
lating a so-called bi-intuitionistic version of BBI, based on combining classical logic with full
intuitionistic linear logic (FILL) as considered in [16]. FILL adds the linear disjunction (“par”)
and its unit to MILL; in BiBBI, we write these connectives as ∗∨ and ⊥∗ respectively. The
disjunction ∗∨ (which the reader is invited to read as “mor”) also has a natural adjoint co-
implication which we write as ∗\ (and refer to as “magic slash”). This adjoint was not present
in the original formulation of FILL, but has been considered recently by Clouston et al. in order
to formulate a display calculus for FILL with the cut-elimination property [9]. Here, we include
∗\ partly for the sake of symmetry, but also because, like in [9], it plays a useful rôle in some of
our technical developments.

Provability in BiBBI can be given in the usual way simply by combining suitable Hilbert
systems for classical logic and for FILL. One of our main contributions in this paper is to
formulate a suitable Kripke frame semantics for BiBBI, and to show that provability is sound
and complete with respect to validity in this semantics. Soundness is an easy result, whereas
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completeness follows by embedding BiBBI into a suitable modal logic and deploying Sahlqvist’s
well-known completeness theorem for modal logic (see, e.g., [2]). BiBBI is easily seen to be “in
between” the logics BBI and CBI, in the sense that BiBBI is an extension of BBI and CBI an
extension of BiBBI.

We consider a number of variants of BiBBI, based on whether or not various natural logical
principles of FILL are included in our logic. For each such principle, we identify a corresponding
first-order frame condition on the Kripke models of BiBBI which exactly defines the validity
of the principle in any such model (see Table 1 in Section 3). As a helpful side effect, this
enables us to present our soundness and completeness results so as to apply to any variant of
BiBBI. Probably the most interesting principle of FILL is the so-called weak distribution of
multiplicative conjunction over disjunction, given by

A ∗ (B ∗∨ C) ⊢ (A ∗B) ∗∨ C.

This axiom is of crucial importance in FILL, and consequently in BiBBI, because it provides
the only connection between the (∗,—∗,⊤∗) and ( ∗∨, ∗\ ,⊥∗) fragments of the logic(s). The frame
condition corresponding to the above weak distribution law is surprisingly complicated, and
in Section 4 we undertake a more detailed investigation of the models of BiBBI obeying this
condition. In particular, we find that the heap-like models of separation logic can be extended
to models of BiBBI obeying the weak distribution condition if we interpret the multiplicative
disjunction ∗∨ using certain natural notions of intersection of heaps. We also present some general
techniques for constructing BiBBI-models obeying weak distribution.

The remainder of this paper is structured as follows. In Section 2 we recall the model-
theoretic and proof-theoretic characterisations of BBI and CBI. We then introduce our biintu-
itionistic bunched logic BiBBI, via both a Kripke frame semantics and a Hilbert-style axiomatic
proof system, in Section 3. In Section 4 we investigate the Kripke models of BiBBI in more
detail, and present some general constructions for BiBBI-models obeying the weak distribution
law. Section 5 gives our completeness proof, and Section 6 concludes.

2 BBI and CBI: an overview

In this section, we recall the basic characterisations of validity (based on Kripke frame semantics)
and provability in the bunched logics BBI [17, 11] and CBI [4].

We assume a denumerably infinite set V of propositional variables, and write P(X) for the
powerset of a set X.

2.1 Boolean BI

Here we briefly recall the syntax, proof theory, and semantics of BBI, as can be found in several
places in the literature. We remark that the metatheory of BBI has been quite extensively
studied from the point of view of completeness [11, 15], expressivity [18, 6], decidability [5, 19],
and proof theory [3, 22, 20].

Definition 2.1. BBI-formulas are built from propositional variables P ∈ V using the standard
formula connectives ⊤,⊥,¬,∧,∨,→ of propositional classical logic, and the so-called “multi-
plicative” connectives, consisting of the constant ⊤∗ and binary operators ∗ and —∗.

By convention, ¬ has the highest precedence, followed by ∗, ∧ and ∨, with → and —∗ having
lowest precedence.
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Definition 2.2. Provability in BBI is given by extending a complete Hilbert system for classical
logic with the following axioms and inference rules for ∗, —∗ and ⊤∗. The “sequent” notation
A ⊢ B is used as syntactic sugar for the formula A → B.

A ∗B ⊢ B ∗A A ⊢ A ∗ ⊤∗ A ∗ ⊤∗ ⊢ A A ∗ (B ∗ C) ⊢ (A ∗B) ∗ C

A1 ⊢ B1 A2 ⊢ B2

A1 ∗A2 ⊢ B1 ∗B2

A ∗B ⊢ C

A ⊢ B —∗ C

A ⊢ B —∗ C

A ∗B ⊢ C

Definition 2.3. A BBI-frame is a a tuple 〈W, ◦, E〉, whereW is a set (of “worlds”), ◦ : W×W →
P(W ) and E ⊆ W . We extend ◦ pointwise to P(W )× P(W ) → P(W ) by

W1 ◦W2 =def

⋃

w1∈W1,w2∈W2
w1 ◦ w2 .

A BBI-frame 〈W, ◦, E〉 is a BBI-model if ◦ is commutative and associative, and w ◦E = {w} for
all w ∈ W . (By definition, the latter means that

⋃

e∈E w ◦ e = {w} for all w ∈ W .) We call E
the set of units of the model 〈W, ◦, E〉.

If the binary operation ◦ in a BBI-model M = 〈W, ◦, E〉 satisfies |w1 ◦ w2| ≤ 1 for all
w1, w2 ∈ W , then we say that M is partial functional and understand ◦ as a partial function of
type W ×W ⇀ W .

Example 2.4. The standard heap model 〈Heaps, ◦, {e}〉 of separation logic [25] is defined as
follows. First, Heaps = Loc ⇀fin Val is the set of partial functions mapping finitely many
locations Loc to values Val. We write dom(h) for the domain of heap h, i.e. the set of locations
on which h is defined. We define h1 ◦ h2 to be the union of heaps h1 and h2 if dom(h1) and
dom(h2) are disjoint (and undefined otherwise), and we let e be the empty heap with dom(e) = ∅.
It is straightforward to verify that 〈Heaps, ◦, {e}〉 is a (partial functional) BBI-model.

Definition 2.5. Let M = 〈W, ◦, E〉 be a BBI-model. A valuation for M is a function ρ that
assigns to each atomic proposition P a set ρ(P ) ⊆ W . Given any valuation ρ for M , any w ∈ W
and any L-formula A, we define the forcing relation w |=ρ A by induction on A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ ⊤ ⇔ always
w |=ρ ⊥ ⇔ never

w |=ρ ¬A ⇔ w 2ρ A
w |=ρ A1 ∧A2 ⇔ w |=ρ A1 and w |=ρ A2

w |=ρ A1 ∨A2 ⇔ w |=ρ A1 or w |=ρ A2

w |=ρ A1 → A2 ⇔ w |=ρ A1 implies w |=ρ A2

w |=ρ ⊤∗ ⇔ w ∈ E
w |=ρ A1 ∗A2 ⇔ ∃w1, w2 ∈ W. w ∈ w1 ◦ w2 and w1 |=ρ A1 and w2 |=ρ A2

w |=ρ A1 —∗ A2 ⇔ ∀w′, w′′ ∈ W. if w′′ ∈ w ◦ w′ and w′ |=ρ A1 then w′′ |=ρ A2

A is said to be valid in M if w |=ρ A for any valuation ρ and for all w ∈ W , and BBI-valid if it
is valid in all BBI-models.

Theorem 2.6 (Soundness / completeness of BBI [11]). A BBI-formula is BBI-valid if and only
if it is BBI-provable.
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2.2 Classical BI

Here we recall the definitions of provability and validity in the bunched logic CBI [4].

Definition 2.7. CBI-formulas are defined as BBI-formulas (Defn. 2.1), except that they may
also contain the “multiplicative falsum” constant ⊥∗. We write ∼A as an abbreviation for
A —∗ ⊥∗, and A ∗∨ B as an abbreviation for ∼(∼A ∗ ∼B).

Definition 2.8. Provability in CBI is defined as for BBI (Defn. 2.2) except that the following
axiom is also included:

∼∼A ⊢ A

Definition 2.9. A CBI-model is given by a tuple 〈W, ◦, E, U〉, where 〈W, ◦, E〉 is a BBI-model
(see Defn. 2.3), U ⊆ W , and for each w ∈ W , there is a unique −w ∈ W (the “dual” of w)
satisfying (w ◦ −w) ∩ U 6= ∅.

Definition 2.10. A valuation for a CBI-model and satisfaction w |=ρ A of a CBI-formula A by
the world w and valuation ρ are defined as for BBI (Defn. 2.5), except that we add the following
clause for satisfaction of the multiplicative falsum:

w |=ρ ⊥∗ ⇔ w /∈ U

Example 2.11 ([4]). Let {0, 1}ω denote all infinite strings over the alphabet {0, 1} of “bits”.
Writing 0ω for the infinite string of 0s and XOR for the standard bitwise exclusive-or operation
on infinite bit strings, it is easy to check that 〈{0, 1}ω,XOR, {0ω}〉 is a BBI-model.

Now, for any σ ∈ {0, 1}ω, let σ be the bit string obtained from σ by flipping each of its bits
from 0 to 1 and vice versa (so e.g. 0ω = 1ω). For any σ ∈ {0, 1}ω, the string σ is the unique
−σ ∈ {0, 1}ω such that σ XOR −σ = 1ω. Thus 〈{0, 1}ω,XOR, {0ω}, {1ω}〉 is a CBI-model.

Proposition 2.12. The heap model 〈Heaps, ◦, {e}〉 of BBI defined in Example 2.4 is not a
CBI-model. That is, there is no set U ⊆ Heaps such that 〈Heaps, ◦, {e}, U〉 is a CBI-model.

Proof. Suppose for contradiction that such a U exists. Clearly U must be nonempty. In fact
|U | = 1, for if u1, u2 ∈ U then e ◦ u1 = {u1} ⊆ U and e ◦ u2 = {u2} ⊆ U , and by the CBI axiom
we then have u1 = −e = u2. So U = {u}, say. Note that u ∈ Heaps and thus dom(u) is finite.
Let h be a heap with dom(h) ⊃ dom(u) (there are infinitely many such h). Then there exists a
heap −h such that h ◦ −h = u by the CBI-axiom, but it is clear that there is no such heap.

Given a CBI-model 〈W, ◦, E, U〉, the condition in Definition 2.9 induces a function − : W →
W sending w to −w, and this function is necessarily involutive, i.e. −−w = w for any w ∈ W
(see [4])1. Moreover, it is easy to show that −E = U .

Using this definition, and extending − pointwise to sets in a similar way to ◦ (see Defn. 2.3),
we obtain the following clauses for satisfaction of multiplicative negation ∼ and disjunction ∗∨:

w |=ρ ∼A ⇔ −w 2ρ A
w |=ρ A ∗∨ B ⇔ ∀w1, w2 ∈ W. if w ∈ −(−w1 ◦ −w2) then w1 |=ρ A or w2 |=ρ B

Theorem 2.13 (Soundness / completeness of CBI [4, 3]). A CBI-formula is CBI-valid if and
only if it is CBI-provable.

Proof. It is shown in [4] that a display calculus for CBI is sound and complete for CBI-validity,
and in [3] that provability in this display calculus is equivalent to provability in the minimal
system we present here. (In [3], a particular presentation of classical logic is chosen, but clearly
any sound and complete presentation suffices.)

1In [4] the function − : W → W is given as part of the model, but in fact U determines − (and vice versa).
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Theorem 2.14 ([4]). CBI is a non-conservative extension of BBI. That is, there are BBI-
formulas that are CBI-valid but not BBI-valid.

3 BiBBI: Bi-intuitionistic Boolean bunched logic

In this section we introduce our bi-intuitionistic Boolean bunched logic, BiBBI. This logic ex-
tends standard BBI with the multiplicative disjunction ∗∨, together with its adjoint multiplicative
co-implication ∗\ (a.k.a. “magic slash”) and the multiplicative falsum ⊥∗. These connectives are
here given an essentially intuitionistic interpetation, in analogy to their readings in FILL [16];
in particular, ∗ and ∗∨ are not connected by de Morgan equivalences.

Below, we define a suitable notion of a Kripke model for BiBBI, and then set out the
interpretation of formulas in these models, along similar lines to the semantics of BBI in CBI in
Section 2. Our choice of models and interpretation is designed to achieve several complementary
objectives:

1. BiBBI is an extension of BBI (i.e., for BBI-formulas, validity in BBI implies validity in
BiBBI). Furthermore, when a suitable “classicality” axiom is added to BiBBI, it collapses
into CBI (see Proposition 3.7). Thus, BiBBI can be seen as an intermediate logic between
BBI and CBI.

2. Our interpretation of multiplicative disjunction ∗∨ in BiBBI is dual to the interpretation
of multiplicative conjunction ∗, in the sense that ∗∨ can be read as a binary box modality
in modal logic [2], while ∗ can be read as a binary diamond modality.

3. For each natural logical principle governing the behaviour of ∗∨, ∗\ and ⊥∗ (drawn from the
axioms of FILL), one can write down an equivalent first-order condition on BiBBI-models
(see Table 1).

4. Finally, for any variant of BiBBI obtained by taking some combination of logical axioms
from Table 1, we achieve a suitable soundness and completeness result for that variant
with respect to the associated class of models.

Definition 3.1. A BiBBI-formula is defined as a BBI-formula (Defn. 2.1), except that it may
also contain the multiplicative constant ⊥∗, and the binary multiplicative connectives ∗\ and ∗∨.
That is, BiBBI features the following multiplicative connectives:

⊤∗, ∗,—∗,⊥∗, ∗∨, ∗\ .

As in CBI, we write ∼A as an abbreviation for A —∗ ⊥∗.

Next, we present a basic characterisation of validity for BiBBI-formulas and an associated
notion of basic provability. Then, we extend these characterisations to deal with various further
logical properties, which we regard as a sort of “logical buffet” from which we can obtain a logic
by choosing the principles we wish to include. However, we include commutativity of ∗∨ as a
basic principle for technical convenience, since a non-commutative ∗∨ naturally leads to both ∗\
and ⊥∗ splitting into two connectives (acting on the left and right of ∗∨).

Definition 3.2. A basic BiBBI-model is given by 〈W, ◦, E,▽, U〉, where 〈W, ◦, E〉 is a BBI-
model, U ⊆ W and ▽: W ×W → P(W ) is commutative. We extend ▽ pointwise to sets in a
similar manner to ◦:

W1 ▽ W2 =def

⋃

w1∈W1,w2∈W2
w1 ▽ w2 .

6



A valuation for a basic BiBBI-model M = 〈W, ◦, E,▽, U〉 is defined as in Definition 2.5. Satis-
faction w |=ρ A of a BiBBI-formula A by the valuation ρ and world w is given by extending the
forcing relation in Definition 2.5 with the following clauses for ⊥∗, ∗∨ and ∗\ :

w |=ρ ⊥∗ ⇔ w /∈ U
w |=ρ A ∗∨ B ⇔ ∀w1, w2 ∈ W. w ∈ w1 ▽ w2 implies w1 |=ρ A or w2 |=ρ B
w |=ρ A ∗\ B ⇔ ∃w′, w′′ ∈ W. w′′ ∈ w′

▽ w and w′′ |=ρ A and w′
2ρ B

Similarly to BBI and CBI (see Section 2), a BiBBI-formula A is valid in M if w |=ρ A for all
w ∈ W , and BiBBI-valid if it is valid in all BiBBI-models.

Definition 3.3. Basic provability in BiBBI is given by extending the proof system for BBI (see
Definition 2.2) with the following axioms and inference rules:

Monotonicity: Residuation: Commutativity:

A1 ⊢ B1 A2 ⊢ B2

A1
∗∨ A2 ⊢ B1

∗∨ B2

A ⊢ B ∗∨ C

A ∗\ B ⊢ C

A ∗\ B ⊢ C

A ⊢ B ∗∨ C
A ∗∨ B ⊢ B ∗∨ A

Theorem 3.4 (Basic soundness). If a formula A is provable in the system for basic BiBBI
(Definition 3.3) then it is valid in all basic BiBBI-models.

Proof. By soundness for standard BBI (Theorem 2.6) it suffices to show that the axioms and
rules in Definition 3.3 preserve validity in an arbitrary basic BiBBI-model 〈W, ◦, E,▽, U〉. We
distinguish a case for each rule.

Monotonicity: Assume that the premises A1 ⊢ B1 and A2 ⊢ B2 are valid. Then, assuming
w |=ρ A1

∗∨ A2, we must show that w |=ρ B1 ∨B2, i.e. that w ∈ w1 ▽ w2 implies w1 |=ρ B1

or w2 |=ρ B2. Assume w ∈ w1 ▽ w2. Since w |=ρ A1
∗∨ A2, either w |=ρ A1 or w |=ρ A2.

Using validity of the two premises of the rule, either w |=ρ B1 or w |=ρ B2, as required.

Residuation: We just show soundness of one of the rules here; the other is similar. Assume that
the premise A ∗\ B ⊢ C is valid. Then, assuming w |=ρ A, we must show w |=ρ B ∗∨ C.
That is, assuming w ∈ w1 ▽ w2, we must show either w1 |=ρ B or w2 |=ρ C. Thus,
we assume w1 2ρ B and must show w2 |=ρ C. Since, collecting assumptions, we have
w ∈ w1 ▽ w2 with w |=ρ A and w1 2ρ B, it holds that w2 |=ρ A ∗\ B, whence w2 |=ρ C as
required by the validity of the rule premise.

Commutativity: Follows immediately from commutativity of ▽.

Definition 3.5. A variant of BiBBI is obtained by adding, for any combination of “principles”
from Table 1, (a) the logical axiom A for that principle to the basic BiBBI proof system in
Definition 3.3, and (b) the frame condition F(A) for that principle as an additional condition
on the basic BiBBI-models in Definition 3.2.

Proposition 3.6. In any variant of BiBBI obeying both weak distribution and unit contraction,
we have the following multiplicative analogue of the usual disjunctive syllogism:

A ∗ (∼A ∗∨ B) ⊢ B

Proof. First, A —∗ ⊥∗ ⊢ A —∗ ⊥∗ is trivially provable. Thus, by residuation and commutativity
of ∗, we obtain A ∗ (A —∗ ⊥∗) ⊢ ⊥∗, which is equal to A ∗ ∼A ⊢ ⊥∗. Since B ⊢ B is trivially
provable, we obtain (A ∗ ∼A) ∗∨ B ⊢ ⊥∗ ∗∨ B using BiBBI’s monotonicity rule for ∗∨. Now, as
⊥∗ ∗∨ B ⊢ B is an instance of the unit contraction axiom and A ∗ (∼A ∗∨ B) ⊢ (A ∗ ∼A) ∗∨ B is
an instance of the weak distribution axiom, we obtain A ∗ (∼A ∗∨ B) ⊢ B by transitivity.
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Principle Axiom A Frame condition F(A)

Associativity A ∗∨ (B ∗∨ C) ⊢ (A ∗∨ B) ∗∨ C w1 ▽ (w2 ▽ w3) = (w1 ▽ w2) ▽ w3

Unit expansion A ⊢ A ∗∨ ⊥∗ w ▽ U ⊆ {w}

Unit contraction A ∗∨ ⊥∗ ⊢ A w ∈ w ▽ U

Contraction A ∗∨ A ⊢ A w ∈ w ▽ w

Weak distribution A ∗ (B ∗∨ C) ⊢ (A ∗B) ∗∨ C (x1 ◦ x2) ∩ (y1 ▽ y2) 6= ∅ implies
∃w. y1 ∈ x1 ◦ w and x2 ∈ w ▽ y2

Classicality ∼∼A ⊢ A ∃!−w. (w ◦ −w) ∩ U 6= ∅

Table 1: Optional axioms of BiBBI and the corresponding first-order frame conditions (from
which we suppress outermost universal quantifiers over the model domain).

The interpretations of ⊥∗ and ∗∨ in BiBBI are (partially) justified by the following proposition,
which shows that BiBBI with classicality is exactly CBI.

Proposition 3.7. The following relationships hold between BiBBI and CBI:

1. For any BiBBI-model 〈W, ◦, E,▽, U〉 satisfying classicality in Table 1, 〈W, ◦, E, U〉 is a
CBI-model.

2. Any CBI-model 〈W, ◦, E, U〉 can be viewed as a BiBBI-model 〈W, ◦, E,▽, U〉, by taking
w1 ▽ w2 = −(−w1 ◦ −w2). This model satisfies the frame conditions for classicality,
associativity, unit expansion / contraction, and weak distribution.

3. When CBI-models are identified with BiBBI-models as above, CBI-validity (Defn. 2.10)
coincides with validity in the corresponding variant of BiBBI.

4. Any CBI-formula that is valid in a variant of BiBBI without contraction is also CBI-valid.

Proof. 1. Immediate by construction.

2. Let 〈W, ◦, E, U〉 be a CBI-model. It is immediate that 〈W, ◦, E,▽, U〉 is a basic BiBBI-
model, with commutativity of ▽ an easy consequence of the commutativity of ◦. We have
to check that 〈W, ◦, E,▽, U〉 is indeed a model of BiBBI satisfying the required properties.

Next, we have to check that 〈W, ◦, E,▽, U〉 satisfies all of the frame conditions mentioned
above. Classicality is exactly the CBI-model axiom, so is trivially satisfied (and conse-
quently we have −−w = {w} for any w ∈ W and −E = U , cf. [4]). For associativity, we
check as follows:

w1 ▽ (w2 ▽ w3) = −(−w1 ◦ −−(−w2 ◦ −w3))

= −(−w1 ◦ (−w2 ◦ −w3)) (since −−X = X)

= −((−w1 ◦ −w2) ◦ −w3) (by associativity of ◦)

= −(−−(−w1 ◦ −w2) ◦ −w3) (since −−X = X)

= (w1 ▽ w2) ▽ w3
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Next, we check the unit contraction and unit expansion axioms simultaneously:

U ▽ w =
⋃

u∈U −(−u ◦ −w)

= −(
⋃

u∈U (−u ◦ −w))

= −((
⋃

u∈U −u) ◦ −w)

= −(E ◦ −w) (since
⋃

u∈U −u = −U = E)

= {−−w} = {w}

Finally, we must verify the weak distribution axiom. Suppose (x1 ◦ x2) ∩ (y1 ▽ y2) 6= ∅.
That is, for some z ∈ x1 ◦ x2 we have z ∈ −(−y1 ◦ −y2), or equivalently −z ∈ −y1 ◦ −y2,
which is again equivalent (see [4]) to y1 ∈ z ◦ −y2. Putting everything together and using
associativity of ◦, we get y1 ∈ x1 ◦ (x2 ◦ −y2). Thus, for some w ∈ x2 ◦ −y2, we have
y1 ∈ x1 ◦ w. But, using the same properties as before, w ∈ x2 ◦ −y2 is equivalent to
−x2 ∈ −w ◦ −y2 and then to x2 ∈ −(−w ◦ −y2), i.e. x2 ∈ w ▽ y2 as required. This
completes the verification of the frame conditions.

3. Just observe that the clauses for satisfaction of ⊥∗ coincide in the forcing relations for
BiBBI and CBI, and that by inserting the definition of ▽ into BiBBI’s clause for ∗∨, we
obtain exactly the usual CBI clause for ∗∨.

4. Let A be a CBI-formula valid in a contraction-free variant of BiBBI. Let M be a CBI-
model. Using part 2 of the proposition, we can extend M to a BiBBI-model M ′ satisfying
all properties in Table 1 except contraction; therefore, M ′ is a model of the required BiBBI
variant. By assumption, A is valid in M ′ (w.r.t. the contraction-free BiBBI variant). By
part 3 of the proposition, A is then valid in the CBI-model M , as required.

Theorem 3.8. For each principle listed in Table 1, the logical axiom A corresponding to that
principle defines the corresponding frame condition F(A). That is, for any basic BiBBI-model
M , the axiom A is valid in M if and only if M has the property F(A).

Proof. Let M = 〈W, ◦, E,▽, U〉 be a basic BiBBI-model. We distinguish a case for each principle
from Table 1.

Associativity: (⇐) Assuming ▽ is associative, we have to show A ∗∨ (B ∗∨ C) ⊢ (A ∗∨ B) ∗∨ C is
valid in M . So, assuming w |=ρ A ∗∨ (B ∗∨ C), we have to show that w |=ρ (A ∗∨ B) ∗∨ C.
This means, assuming w ∈ u ▽ v, we have to show that u |=ρ A ∗∨ B or v |=ρ C. If v |=ρ C
we are done. Otherwise we have v 2ρ C and must show u |=ρ A ∗∨ B. Thus, assuming
u ∈ a ▽ b, we have to show a |=ρ A or b |=ρ B. Now, collecting assumptions and using
associativity of ▽, we have:

w ∈ (a ▽ b) ▽ v = a ▽ (b ▽ v)

That is, we have w ∈ a ▽ x for some x ∈ b ▽ v. Since w |=ρ A ∗∨ (B ∗∨ C) by assumption
and w ∈ a ▽ x, we have either a |=ρ A or x |=ρ B ∗∨ C. If a |=ρ A we are done. Otherwise,
since x |=ρ B ∗∨ C and x ∈ b ▽ v and v 2ρ C, we have b |=ρ B as required.

(⇒) Assuming that A ∗∨ (B ∗∨ C) ⊢ (A ∗∨ B) ∗∨ C is valid in M , we must show that ▽

is associative. Since ▽ is commutative by definition, it suffices to show for arbitrary
w, x, y ∈ W that (w ▽ x) ▽ y ⊆ w ▽ (x ▽ y). Let z ∈ (w ▽ x) ▽ y, so that there exists
u ∈ W with z ∈ u ▽ y and u ∈ w ▽ x. Let A,B,C be propositional variables and define a
valuation ρ for M by:

ρ(A) = W \ {w} ρ(B) = W \ {x} ρ(C) = W \ {y}
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Now, since u ∈ w ▽ x but w 2ρ A and x 2ρ B, we have u 2ρ A ∗∨ B. Similarly, since
z ∈ u ▽ y but u 2ρ A ∗∨ B and y 2ρ C we have z 2ρ (A ∗∨ B) ∗∨ C. Since the associativity
axioms A ∗∨ (B ∗∨ C) ⊢ (A ∗∨ B) ∗∨ C is valid in M , we must have z 2ρ A ∗∨ (B ∗∨ C). This
implies there exist w1, w2, w

′, w′′ ∈ W with

z ∈ w1 ▽ w2 and w1 2ρ A and w2 ∈ w′
▽ w′′ and w′

2ρ B and w′′
2ρ C

That is, z ∈ w ▽ w2 and w2 ∈ x ▽ y for some w2 ∈ W , which means z ∈ w ▽ (x ▽ y).
This completes the case.

Unit expansion: (⇐) Assuming that w ▽ U ⊆ {w} for all w ∈ W , we have to show that
A ⊢ A ∗∨ ⊥∗ is valid in M . So, assuming that w |=ρ A, we have to show w |=ρ A ∗∨ ⊥∗.
This means showing, assuming that w ∈ w1 ▽ w2, that either w1 |=ρ A or w2 |=ρ ⊥∗. If
w2 |=ρ ⊥∗ then we are done, so assume that w2 2ρ ⊥∗, which means w2 ∈ U . In that case,
w ∈ w1 ▽ U ⊆ {w1}, which implies w1 = w and thus w1 |=ρ A as required.

(⇒) Assuming that A ⊢ A ∗∨ ⊥∗ is valid in M , we have to show that w ▽ U ⊆ {w} for
any w ∈ W . Let x ∈ w ▽ U , which means x ∈ w ▽ u for some u ∈ U . We have to
show that x = w. Let A be a propositional variable and define a valuation ρ for M by
ρ(A) = W \ {w}. Since x ∈ w ▽ u but w 2ρ A and u 2ρ ⊥∗, we have x 2ρ A ∗∨ ⊥∗. Since
A ⊢ A ∗∨ ⊥∗ is valid in M , we have x 2ρ A, i.e. x = w as required.

Unit contraction: (⇐) Assuming w ∈ w ▽ U for all w ∈ W , we have to show that A ∗∨ ⊥∗ ⊢ A
is valid in M . So, assuming that w |=ρ A ∗∨ ⊥∗, we must show w |=ρ A. As w ∈ w ▽ u
for some u ∈ U and w |=ρ A ∗∨ ⊥∗, we must have either w |=ρ A or u |=ρ ⊥∗. The latter is
impossible, so w |=ρ A as required.

(⇒) Assuming A ∗∨ ⊥∗ ⊢ A is valid in M , we have to show that w ∈ w ▽ U for any w ∈ W .
Let A be a propositional variable and define a valuation ρ for M by ρ(A) = W \ {w}. By
construction, w 2ρ A. Since A ∗∨ ⊥∗ ⊢ A is valid in M , we have w 2ρ A ∗∨ ⊥∗. This means
there exist x, u ∈ W such that w ∈ x ▽ u and x 2ρ A and u 2ρ ⊥∗. That is, w ∈ w ▽ u
for some u ∈ U , i.e. w ∈ w ▽ U as required.

Contraction: (⇐) Assuming w ∈ w ▽ w for all w ∈ W , we have to show that A ∗∨ A ⊢ A is
valid in M . Assuming that w |=ρ A ∗∨ A, since w ∈ w ▽ w we immediately have w |=ρ A
as required.

(⇒) Assuming that A ∗∨ A ⊢ A is valid in M , we have to show that w ∈ w ▽ w for any
w ∈ W . Let A be a propositional variable and define a valuation ρ for M by ρ(A) =
W \ {w}. By construction, w 2ρ A. Since A ∗∨ A ⊢ A is valid in M , we have w 2ρ A ∗∨ A.
This means there exist w1, w2 ∈ W such that w ∈ w1 ▽ w2 and w1 2ρ A and w2 2ρ A.
That is, w = w1 = w2, and so w ∈ w ▽ w as required.

Weak distribution: (⇐) Assuming that the weak distribution frame property holds in M , we
have to show that A ∗ (B ∗∨ C) ⊢ (A ∗B) ∗∨ C is valid in M . So, given w |=ρ A ∗ (B ∗∨ C),
we must show that w |=ρ (A ∗B) ∗∨ C. This means showing, assuming that w ∈ w1 ▽ w2,
that either w1 |=ρ A ∗B or w2 |=ρ C. Since w |=ρ A ∗ (B ∗∨ C), we have w ∈ x1 ◦x2 where
x1 |=ρ A and x2 |=ρ B ∗∨ C. Collecting assumptions, we have (x1 ◦ x2) ∩ (w1 ▽ w2) 6= ∅,
so by the weak distribution frame property there exists y ∈ W such that w1 ∈ x1 ◦ y and
x2 ∈ y ▽ w2. Now, since x2 ∈ y ▽ w2 and x2 |=ρ B ∗∨ C we must have either y |=ρ B
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or w2 |=ρ C. If w2 |=ρ C, we are done. Otherwise, since w1 ∈ x1 ◦ y and x1 |=ρ A and
y |=ρ B, we have w1 |=ρ A ∗B as required.

(⇒) Assuming that A ∗ (B ∗∨ C) ⊢ (A ∗B) ∗∨ C is valid in M , we have to show that the
weak distribution frame property holds in M . That is, supposing z ∈ (x1 ◦x2)∩ (y1 ▽ y2),
we have to find a w ∈ W such that y1 ∈ x1 ◦ w and x2 ∈ w ▽ y2. Let A,B,C be
propositional variables and define a valuation ρ for M by

ρ(A) = {x1} ρ(B) = {w ∈ W | x2 ∈ w ▽ y2} ρ(C) = W \ {y2}

Now observe that by construction of ρ we have the following:

∀w1 ∈ W. x2 ∈ w1 ▽ y2 implies w1 |=ρ B
i.e. ∀w1, w2 ∈ W. x2 ∈ w1 ▽ w2 and w2 2ρ C implies w1 |=ρ B
i.e. ∀w1, w2 ∈ W. x2 ∈ w1 ▽ w2 implies w1 |=ρ B or w2 |=ρ C
i.e. x2 |=ρ B ∗∨ C

Since z ∈ x1 ◦ x2, with x1 |=ρ A by construction and x2 |=ρ B ∗∨ C by the above, we get
z |=ρ A ∗ (B ∗∨ C). By the main assumption, z |=ρ (A ∗B) ∗∨ C. Now, as z |=ρ (A ∗B) ∗∨ C
and z ∈ y1 ▽ y2 but y2 2ρ C, we must have y1 |=ρ A ∗B. This means that there exist
u,w ∈ W with y1 ∈ u ◦ w and u |=ρ A and w |=ρ B. By definition of ρ, this precisely
means that y1 ∈ x1 ◦ w and x2 ∈ w ▽ y2, as required.

Classicality: (⇐) Assuming the CBI-model axiom holds in M , we have to show that ∼∼A ⊢ A
is valid. This means, assuming that w |=ρ ∼∼A, showing that w |=ρ A. Using the clause
for satisfaction of ∼ given in Section 2, we have −−w |=ρ A, and thus immediately w |=ρ A
using the fact from [4] that − is an involutive function on W .

(⇒) Assuming that ∼∼A ⊢ A is valid in M , we have to show that the CBI-model axiom
holds, i.e. that for any w ∈ W there is a unique w′ ∈ W such that (w ◦ w′) ∩ U 6= ∅.
Let A be a propositional variable and define a valuation ρ for M by ρ(A) = W \ {w}.
By construction, w 2ρ A, so using the main assumption we have w 2ρ (A —∗ ⊥∗) —∗ ⊥∗.
Thus, there exist w′, w′′ ∈ W such that w′′ ∈ w ◦w′ and w′ |=ρ A —∗ ⊥∗ but w′′

2ρ ⊥∗, i.e.
w′′ ∈ U . That is, there exists an −w = w′ ∈ W such that (w ◦ −w) ∩ U 6= ∅.

It just remains to show that −w is unique. Write Co(w) for the set of all w′ such that
(w ◦ w′) ∩ U 6= ∅, and note that Co(w) is nonempty by the above. According to part 1 of
Proposition 2.2 in [4], it suffices to show that Co(Co(w)) ⊆ {w}, extending Co pointwise
to sets as usual. To see this, first define a new valuation ρ′ for M by ρ′(A) = {w},
so that w |=ρ′ A by construction. Since A ⊢ ∼∼A is already provable in BBI, we have
w |=ρ′ (A —∗ ⊥∗) —∗ ⊥∗. It is easy to show that this means that w′ |=ρ′ A for all
w′ ∈ Co(Co(w)). That is, Co(Co(w)) ⊆ {w} as required.

Corollary 3.9 (Soundness of BiBBI). If a formula is provable in some variant of BiBBI then
it is valid in that variant.

Proof. Follows immediately from Theorems 3.4 and 3.8.

We conclude this section by stating our completeness result, the converse to Corollary 3.9.

Theorem 3.10 (Completeness of BiBBI). If a BiBBI-formula is valid in some variant of BiBBI
then it is provable in that variant.

We present the detailed proof of Theorem 3.10 in Section 5.
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4 From BBI-models to BiBBI-models

In this section, we consider whether interesting models of BiBBI can be obtained via general
constructions on BBI-models.

First, we observe that any pair of BBI-models M = 〈W, ◦, E〉 and M ′ = 〈W, ◦′, E′〉 over
the same set of worlds can be trivially “joined” into a BiBBI-model 〈W, ◦, E, ◦′, E′〉. Of the
logical principles in Table 1, this BiBBI-model satisfies associativity, unit contraction and unit
expansion, but no other properties in general; in particular, weak distribution typically fails,
and so we cannot reason very meaningfully about any interaction between M and M ′.

Below, we show how to turn any partial functional BBI model M = 〈W, ◦, E〉 into a BiBBI-
model 〈W ′, ◦′, E′,▽, U〉 that does obey weak distribution, using two general constructions. The
first construction, given in Section 4.1, extends M directly to a BiBBI-model 〈W, ◦, E,▽, U〉
in which ▽ is interpreted as a type of generalised “intersection”. This construction yields
BiBBI-models with the contraction and weak distribution properties, but in general no others
(Theorem 4.5).

In the second construction (Section 4.2), which builds on the first one, the worlds W ′ of the
constructed model are pairs of worlds from the original BBI-model, where the first component
of each pair is “included” in the second component. Then, ▽ is interpreted as intersection
(as defined in the first construction) on the first component and the identity on the second
one. Moreover, we show that if the original BBI-model satisfies the cross-split and disjointness
properties typical of heap-like models (see Definition 4.6), then the constructed model satisfies
all the principles listed in Table 1, except for classicality (Theorem 4.12).

For both constructions, we give examples based on the heap model from Example 2.4.

4.1 Intersection in BBI-models

Our first approach to constructing BiBBI-models from BBI-models is to interpret ▽ as an
“intersection-like” operator on worlds. As a motivating example, there are two natural ways
one could go about defining an such an operator in the heap model of Example 2.4, depending
on how to deal with incompatible heaps :

Example 4.1 (Intersections of heaps). Two heaps h1, h2 are said to be compatible at ℓ if
h1(ℓ) = h2(ℓ), and simply compatible if they are compatible for all ℓ ∈ dom(h1) ∩ dom(h2). In
particular, any two heaps with disjoint domains are compatible.

We define two intersection operations ∩1 and ∩2 on heaps as follows:

(h1 ∩1 h2)(ℓ) =def

{

h1(ℓ) if ℓ ∈ dom(h1) ∩ dom(h2) and h1, h2 are compatible at ℓ

undefined otherwise

(h1 ∩2 h2)(ℓ) =def

{

(h1 ∩1 h2)(ℓ) if h1 and h2 are compatible

undefined otherwise

compatible, and ∅ otherwise. Both interpretations of heap intersection make intuitive sense:
in the first case, incompatibilities are silently discarded, while the second intersection detects
them and aborts the whole composition. However, ∩1 is associative, while ∩2 is not. We
note, however, that neither ∩1 nor ∩2 has a natural set of units U ⊆ Heaps, in the sense that
h ∩i U = {h} for all heaps h.

Proposition 4.2. Let 〈Heaps, ◦, {e}〉 be the heap model of Example 2.4, and let ∩1 and ∩2 be
the heap intersection operations defined in Example 4.1. Then, (for any set U ⊆ Heaps) both
〈Heaps, ◦, {e},∩1, U〉 and 〈Heaps, ◦, {e},∩2, U〉 are BiBBI-models with the contraction and weak
distribution properties.
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Proof. Straightforward verifications.

We can extend the above proposition to the case of arbitrary partial functional BBI-models,
using a generalised version of the heap intersection ∩2.

Definition 4.3. Let M = 〈W, ◦, E〉 be a BBI-model. For any w1, w2 ∈ W , define w1 ▽∩ w2 as

{x | ∃x1, x2 ∈ W. w1 ∈ x ◦ x1 and w2 ∈ x ◦ x2 and w1 ◦ x2 6= ∅ and w2 ◦ x1 6= ∅} .

Example 4.4. In the heap model of Example 2.4, h1 ▽∩ h2 is exactly h1 ∩2 h2.

From now on, to simplify notations, and because most models of separation logic in the liter-
ature satisfy this constraint, we will assume an underlying BBI-model that is partial functional.
Thus we write, e.g., w1 ◦w2 = w rather than w1 ◦w2 = {w}. Taking advantage of associativity
of ◦, we also write w1 ♯ . . . ♯ wn to mean that w1 ◦ . . . ◦ wn is defined (i.e., non-empty). The
operation ▽∩ in Definition 4.3 can then be rewritten as follows:

w1 ▽∩ w2 =def {x | ∃x1, x2 ∈ W. w1 = x ◦ x1 and w2 = x ◦ x2 and x ♯ x1 ♯ x2}

(Note that ▽∩ is itself not a partial function in general, and nor is it necessarily associative.)

Theorem 4.5. For any partial functional BBI-model M = 〈W, ◦, E〉, and any U ⊆ W , we have
that 〈W, ◦, E,▽, U〉 is a BiBBI-model with the contraction and weak distribution properties.

Proof. Since M is a BBI-model and ▽∩: W × W → P(W ) is commutative by construction,
〈W, ◦, E,▽, U〉 is a basic BiBBI-model.

To check that contraction holds, we need to show that w ∈ w ▽∩ w for any w ∈ W . Since
M is a BBI-model, there is an ew ∈ E such that w ◦ ew = w. Then,

w = w ◦ ew and w = w ◦ ew and w ♯ ew ♯ ew

hence w ∈ w ▽∩ w as required.
It just remains to verify the weak distribution law. That is, assuming (x1 ◦ x2) ∩ (y1 ▽∩

y2) 6= ∅, we require to find w ∈ W such that y1 = x1 ◦w and x2 ∈ w ▽∩ y2. By assumption, we
have (x1 ◦ x2) = z ∈ y1 ▽∩ y2 (for some z). By definition of ▽∩ there are z1 and z2 such that

y1 = z ◦ z1 and y2 = z ◦ z2 and z ♯ z1 ♯ z2 .

Now we let w = x2 ◦ z1. We immediately have

y1 = z ◦ z1 = x1 ◦ x2 ◦ z1 = x1 ◦ w .

To see that x2 ∈ w ▽∩ y2, we need to find x′, x′′ ∈ W such that

w = x2 ◦ x
′ and y2 = x2 ◦ x

′′ and x2 ♯ x′ ♯ x′′ .

We choose x′ = z1 and x′′ = x1 ◦ z2. We have w = x2 ◦ z1 as required by construction. We also
have

y2 = z ◦ z2 = x1 ◦ x2 ◦ z2 = x2 ◦ (x1 ◦ z2) .

It remains to check x2 ♯ z1 ♯ (x1 ◦ z2), or equivalently (x1 ◦ x2) ♯ z1 ♯ z2, which follows from
x1 ◦ x2 = z and z ♯ z1 ♯ z2.
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4.2 Intersection in BBI-models with global worlds

We are now ready to define our second general construction, based upon the one in the previous
section, for constructing BiBBI-models obeying weak distribution, associativity, contraction
and the unit laws (see Table 1). We begin with a partial functional BBI-model M = 〈W, ◦, E〉
obeying the cross-split and disjointness properties typically encountered in heap-like models of
separation logic [10, 6], and construct a BiBBI-model M̄ = 〈W̄ , ◦̄, Ē, ▽̄, D〉. Each world in W̄
consists of a “local” world w ∈ W paired with a “global” world x ∈ W that “extends” w in the
sense that x = w ◦w′ for some w′. On the “local” part of each world, ◦̄ and ▽̄ behave as ◦ and
▽∩, respectively. On the “global” part of each world, ◦̄ and ▽̄ behave as a union operation ∪
(as defined below) and the identity, respectively.

First, we recall the cross-split and disjointness properties from [10]. These properties are
typical of heap-like models (which have considerably more structure than general BBI-models),
and are needed in order to make our general construction work as intended.

Definition 4.6 ([10]). A partial functional BBI-model 〈W, ◦, E〉 has the cross-split property if
for any t, u, v, w ∈ W such that t ◦ u = v ◦ w, there exist tv , tw , uv , uw such that

t = tv ◦ tw , u = uv ◦ uw , v = tv ◦ uv , and w = tw ◦ uw .

M has the disjointness property (a.k.a. positivity [10]) if w ◦ w is undefined for all w /∈ E.

Next, we define a generalised notion of “union” for BBI-models.

Definition 4.7. Given a partial functional BBI-model 〈W, ◦, E〉, we define the union operation,
∪ : W ×W → P(W ), by

w1 ∪ w2 =def {y ◦ y1 ◦ y2 | w1 = y ◦ y1 and w2 = y ◦ y2} .

We lift ∪ to P(W )× P(W ) → P(W ) in the same way as for ◦:

W1 ∪W2 =def

⋃

w1∈W1,w2∈W2
w1 ∪ w2 .

For our purposes we shall require ∪ to be associative, which is not necessarily the case
for arbitrary partial functional BBI-models. However, as we are about to see, whenever the
underlying BBI-model has the cross-split property, then ∪ becomes associative (an observation
made previously in [14]).

Lemma 4.8. If a partial functional BBI-model M = 〈W, ◦, E〉 has the cross-split property, then
∪ in Definition 4.7 is associative. Moreover, if w = w1 ◦ w2, then w ∈ w ∪ w1.

Proof. First, we show associativity of ∪. As ∪ is easily seen to be commutative, it suffices to
show w1 ∪ (w2 ∪ w3) ⊆ (w1 ∪ w2) ∪ w3.

Suppose w ∈ w1 ∪ (w2 ∪ w3), that is, w ∈ w1 ∪ w′ for some w′ ∈ w2 ∪ w3. By the first of
these, we have w = y ◦ y1 ◦ y′1, where w1 = y ◦ y1 and w′ = y ◦ y′1. By the second, we obtain
w′ = y′ ◦ y2 ◦ y3, where w2 = y′ ◦ y2 and w3 = y′ ◦ y3. Thus we obtain

w′ = y ◦ y′1 = y′ ◦ (y2 ◦ y3)

Thus by the cross-split property, we obtain a, b, c, d ∈ W with

y = a ◦ b, y′ = a ◦ c, y′1 = c ◦ d, and y2 ◦ y3 = b ◦ d .

By applying cross-split to the last of these equalities, we get α, β, γ, δ ∈ W such that

b = α ◦ β, d = γ ◦ δ, y2 = α ◦ γ, and y3 = β ◦ δ .
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Now, collecting equalities and using associativity / commutativity of ◦, we have the following:

w1 = y ◦ y1 = a ◦ b ◦ y1 = a ◦ α ◦ β ◦ y1 = (a ◦ α) ◦ (y1 ◦ β)
w2 = y′ ◦ y2 = a ◦ c ◦ α ◦ γ = (a ◦ α) ◦ (c ◦ γ)

Thus, by definition of ∪, we obtain

(a ◦ α) ◦ (y1 ◦ β) ◦ (c ◦ γ) ∈ w1 ∪ w2

Now write w′′ for (a ◦ α) ◦ (y1 ◦ β) ◦ (c ◦ γ), and note that we have the following:

w′′ = (a ◦ c ◦ β) ◦ (y1 ◦ α ◦ γ)

w3 = y′ ◦ y3 = a ◦ c ◦ β ◦ δ = (a ◦ c ◦ β) ◦ δ

w = y ◦ y1 ◦ y
′

1 = a ◦ b ◦ y1 ◦ c ◦ d = a ◦ α ◦ β ◦ y1 ◦ c ◦ γ ◦ δ

= (a ◦ c ◦ β) ◦ (α ◦ y1 ◦ γ) ◦ δ

Thus we have w ∈ w′′ ∪ w3. Since w′′ ∈ w1 ∪ w2 by the above, we have w ∈ (w1 ∪ w2) ∪ w3 as
required.

For the second part of the lemma, suppose w = w1 ◦ w2. There is an e ∈ E such that
w1 = w1 ◦ e. Then, by construction, w1 ◦ w2 ◦ e ∈ w ∪ w1. The result follows by observing
w1 ◦ w2 ◦ e = (w1 ◦ e) ◦ w2 = w1 ◦ w2 = w.

Definition 4.9. Let M = 〈W, ◦, E〉 be a partial functional BBI-model. We define M̄ =
〈W̄ , ◦̄, Ē, ▽̄, D〉 as follows:

W̄ =def {(w, x) | ∃w
′. x = w ◦ w′}

(w, x) ◦̄ (w′, x′) =def {(w ◦ w′, x′′) | x′′ ∈ x ∪ x′}

Ē =def {(e, e) | e ∈ E}

(w, x) ▽̄ (w′, x′) =def

{

{(w′′, x) | w′′ ∈ w ▽∩ w′} if x = x′

∅ otherwise

D =def {(w,w) | w ∈ W}

Theorem 4.10. Given a partial functional BBI-model M with the cross-split and disjointness
properties, M̄ is a BiBBI-model with the unit contraction, contraction, and weak distribution
properties.

Proof. Let M = 〈W, ◦, E〉. First we have to check that M̄ is a basic BiBBI-model. It is clear
that both ◦̄ and ▽̄ are commutative. Associativity of ◦̄ follows from the associativity of ◦ and
of ∪ (Lemma 4.8). We just need to check that (w, x) ◦̄ Ē = {(w, x)} for any (w, x) ∈ W̄ .

Let (e, e) ∈ Ē, and note that w ◦ e is either undefined or w. If w ◦ e is undefined then so is
(w, x) ◦̄ (e, e), by construction. There is at least one (e, e) ∈ Ē such that w ◦ e = w, and in that
case we have (w, x) ◦̄ (e, e) = {(w, x′) | x′ ∈ x ∪ e}. It thus suffices to show that x ∪ e = {x}.
Note that x = w ◦ w′ for some w′ ∈ W . We have by definition

x ∪ e = {y ◦ y1 ◦ y2 | x = y ◦ y1 and e = y ◦ y2}.

Since e = e ◦ e and x = x ◦ e (because x = w ◦w′), we have x ◦ e ◦ e = x ∈ x∪ e. Now, supposing
z ∈ x ∪ e, we must show z = x. By construction we have z = y ◦ y1 ◦ y2 where x = y ◦ y1
and e = y ◦ y2. Note that (y ◦ y2) ◦ (y ◦ y2) is defined (and equal to e), which means that y ◦ y
and y2 ◦ y2 are also both defined. By disjointness of M , we must have y, y2 ∈ E, which implies
y = y2 = e. Thus x = e ◦ y1 = y1, and so z = e ◦ y1 ◦ e = x, as required.

We now establish the unit contraction, contraction and weak distribution properties for M̄ .
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Unit contraction: Given (w, x) ∈ W̄ , we have to show that (w, x) ∈ (w, x) ▽̄D. By definition,

(w, x) ▽̄D
= (w, x) ▽̄ (x, x)
= {(w′, x) | w′ ∈ w ▽∩ x}
= {(w′, x) | ∃w1, w2. w = w′ ◦ w1 and x = w′ ◦ w2 and w′ ♯ w1 ♯ w2}

Thus, to show (w, x) ∈ (w, x) ▽̄D, we must find w1, w2 with w ♯ w1 ♯ w2 and w = w ◦ w1

and x = w ◦ w2. There is an e ∈ E such that w ◦ e = w, and w′ such that x = w ◦ w′. By
picking w1 = e and w2 = w′, we are done.

Contraction: Given (w, x) ∈ W̄ , we have to show that (w, x) ∈ (w, x) ▽̄ (w, x). We have
(w, x) ▽̄ (w, x) = {(w′, x) | w′ ∈ w ▽∩ w} by definition, and w ∈ w ▽∩ w by the
contraction property for ▽∩ (Theorem 4.5), which completes the case.

Weak distribution: Supposing that

((w1, x1) ◦̄ (w2, x2)) ∩ ((w3, x3) ▽̄ (w4, x4)) 6= ∅

we require to find (z, x) ∈ W̄ such that (w3, x3) ∈ (w1, x1) ◦̄ (z, x) and (w2, x2) ∈ (z, x) ▽̄
(w4, x4). By definition of ◦̄ and ▽̄, we have

{(w, x) | w = w1 ◦ w2 and x ∈ x1 ∪ x2} ∩ {(w′, x3) | w
′ ∈ w3 ▽∩ w4} 6= ∅ .

Thus, x3 = x4 ∈ x1∪x2 and (w1◦w2)∩(w3 ▽∩ w4) 6= ∅. By the weak distribution property
for ▽∩ wr.t 〈W, ◦, E〉 (Theorem 4.5), we get z such that w3 = w1 ◦ z and w2 ∈ z ▽∩ w4.
Now, letting x = x3, there is a w ∈ W such that x = w3 ◦ w, so we have x = z ◦ (w1 ◦ w),
and hence (z, x) ∈ W̄ . Then, x ∈ x ∪ x1 by the second part of Lemma 4.8, and so, as
required,

(w3, x) ∈ (w1, x1) ◦̄ (z, x) and (w2, x) ∈ (z, x) ▽̄ (w4, x4) .

Our final result, stated as Theorem 4.12, is that, if M has the cross-split and the disjointness
properties, then our constructed BiBBI-model M̄ satisfies all the properties of Table 1 except
classicality. The following lemma groups together a number of intermediary results used in the
proof of this theorem.

Lemma 4.11. Suppose that M = 〈W, ◦, E〉 is partial functional and has the cross-split and
disjointness properties, and let M̄ = 〈W̄ , ◦̄, Ē, ▽̄, D〉 be as in Definition 4.9. All of the following
hold:

1. For all (w1, x), (w2, x) ∈ W̄ , we have w1 ▽∩ w2 = {w} for some w ∈ W (and in the
following we typically drop the singleton set brackets).

Consequently, ▽̄ is a partial function on W̄ × W̄ .

2. If (w, x), (w1 ◦ w2, x) ∈ W̄ , then

w ♯ w1 and w ♯ w2 implies (w ◦ w1 ◦ w2, x) ∈ W̄ .

3. For all (w, x), (w1 ◦ w2, x) ∈ W̄ ,

w ▽∩ (w1 ◦ w2) = (w ▽∩ w1) ◦ (w ▽∩ w2) .
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Proof. We start with the following preliminary fact, assuming an underlying BBI-model with
the cross-split and disjointness properties:

∀w,w1, w2 ∈ W.w ♯ w1 ♯ w2 and w ◦ w1 = w ◦ w2 implies w1, w2 ∈ E (1)

Indeed, assume that w ♯ w1 ♯ w2 and w ◦ w1 = w ◦ w2. By the cross-split property, there are
a, b, c, d such that w = a ◦ b = a ◦ c, w1 = c ◦ d, and w2 = b ◦ d. Thus, since w ♯ w1 ♯ w2 by
assumption, we have a ♯ b ♯ c ♯ d ♯ b ♯ d and a ♯ c ♯ c ♯ d ♯ b ♯ d. Consequently we have b ♯ b and
c ♯ c and d ♯ d. By the disjointness property, b, c, d ∈ E, which implies that w1, w2 ∈ E.

We now prove each part of the statement of the lemma separately.

1. First, we show that w1 ▽∩ w2 is nonempty. Since (w1, x), (w2, x) ∈ W̄ , there are w′

1

and w′

2 such that x = w1 ◦ w′

1 = w2 ◦ w′

2. By the cross-split property of M , there are
a, b, c, d ∈ W such that

w1 = a ◦ b, w′

1 = c ◦ d, w2 = a ◦ c, and w′

2 = b ◦ d .

Since w2 ♯ w′

2, we have a ♯ c ♯ b ♯ d, and thus in particular a ♯ b ♯ c. Since w1 = a ◦ b and
w2 = a ◦ c, this gives us a ∈ w1 ▽∩ w2.

On the other hand, supposing that a, a′ ∈ w1 ▽∩ w2, we require to show that a′ = a. By
definition of ▽∩, there are y1, y2, y

′

1, y
′

2 ∈ W such that all of the following hold:

w1 = a ◦ y1 = a′ ◦ y′1, w2 = a ◦ y2 = a′ ◦ y′2, a ♯ y1 ♯ y2, and a′ ♯ y′1 ♯ y′2 .

By cross-split applied to both equalities above, there are α, βi, γi, δi ∈ W , where i ∈ {1, 2},
such that

a = α ◦ βi, yi = γi ◦ δi, a′ = α ◦ γi, and y′i = βi ◦ δi .

Moreover, injecting the facts above into a′ ♯ y′1 ♯ y′2 gives us that α ♯ γi ♯ β1 ♯ δ1 ♯ β2 ♯ δ2,
and hence in particular α ♯ β1 ♯ β2. Thus, we can apply fact (1) to obtain β1, β2 ∈ E.
Similarly, a ♯ y1 ♯ y2 yields γ1, γ2 ∈ E. Thus, a = α = a′ as required.

It is straightforward to verify that ▽̄ is then a partial function on W̄ × W̄ .

2. Assume that the hypotheses hold, i.e., w ♯ w1 and w ♯ w2 and (w, x), (w1 ◦ w2, x) ∈ W̄ .
We have to show that (w ◦w1 ◦w2, x) ∈ W̄ , i.e., that x = (w ◦w1 ◦w2)◦z for some z ∈ W .

By assumption, there are w′, w′′ ∈ W such that x = w ◦ w′ = w1 ◦ w2 ◦ w
′′. Then, by the

cross-split property of M , there are a, b, c, d ∈ W such that

w1 ◦ w2 = a ◦ b, w′′ = c ◦ d, w = a ◦ c, and w′ = b ◦ d .

By applying cross-split again to the first equality above, we get α, β, γ, δ ∈ W such that

a = α ◦ β, b = γ ◦ δ, w1 = α ◦ γ, and w2 = β ◦ δ .

Now, since w1 ♯ w, we have that (α ◦ γ) ♯ (α ◦ β ◦ c), which implies that α ♯ α, and
then by disjointness of M we get α ∈ E. Similarly, w2 ♯ w yields β ∈ E. Consequently,
a = α ◦ β ∈ E, which means in particular that w = c. Thus we have, as required,

x = w ◦ w′ = a ◦ c ◦ b ◦ d = c ◦ (a ◦ b) ◦ d = w ◦ w1 ◦ w2 ◦ d .
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3. First, notice that (w1 ◦ w2, x) ∈ W̄ implies (w1, x), (w2, x) ∈ W̄ . Thus, by part 1 of the
present lemma, we may write

y = w ▽∩ (w1 ◦ w2), y1 = w ▽∩ w1 and y2 = w ▽∩ w2 .

We require to show that y1 ◦ y2 = y. Since y = w ▽∩ (w1 ◦ w2), we have y′, y′′ ∈ W such
that

w = y ◦ y′, w1 ◦ w2 = y ◦ y′′ and y ♯ y′ ♯ y′′ .

By applying cross-split to the second equality, there are a, b, c, d ∈ W such that

w1 = a ◦ b, w2 = c ◦ d, y = a ◦ c and y′′ = b ◦ d .

Now we have w = y ◦ y′ = a ◦ (c ◦ y′) and w1 = a ◦ b. Furthermore, since y ♯ y′ ♯ y′′, we get
a ♯ c ♯ y′ ♯ b ♯ d, which means in particular that a ♯ (c ◦ y′) ♯ b. Therefore, a ∈ w ▽∩ w1,
which means that a = y1. By a similar argument, c = y2. That is, y = a ◦ c = y1 ◦ y2 as
required.

Theorem 4.12. Given a partial functional BBI-model M with the cross-split and disjointness
properties, M̄ is a BiBBI-model with all the properties of Table 1 except classicality.

Proof. All required properties of M̄ apart from unit expansion and associativity is taken care
of by Theorem 4.10. We establish each of these two properties separately.

Unit expansion: We require to show that (w, x) ▽̄D ⊆ {(w, x}. By construction,

(w, x) ▽̄ U = (w, x) ▽̄ (x, x) = {(y, x) | y ∈ w ▽∩ x} .

By Lemma 4.11.1, this is necessarily a singleton set, so it suffices to establish just that
w ∈ w ▽∩ x. Since (w, x) ∈ M̄ , there is a w′ ∈ W with x = w ◦ w′. Since there is an
e ∈ E such that w = w ◦ e and w ◦ w′ = w ◦ (w′ ◦ e) (and hence also w ♯ w′ ♯ e), we have
w ∈ w ▽∩ (w ◦ w′) = w ▽∩ x as required.

Associativity: We require to show that

(w1, x1) ▽̄ ((w2, x2) ▽̄ (w3, x3)) = ((w1, x1) ▽̄ (w2, x2)) ▽̄ (w3, x3) .

When xi 6= xj for some i, j ∈ {1, 2, 3}, both sides of the equation collapse to ∅ and we are
done. Let us thus assume x1 = x2 = x3 = x. In that case, by definition of ▽̄, we require
to prove

w1 ▽∩ (w2 ▽∩ w3) = (w1 ▽∩ w2) ▽∩ w3) .

Writing w = w2 ▽∩ w3, we obtain w′

2, w
′

3 ∈ W such that

w2 = w ◦ w′

2, w3 = w ◦ w′

3, and w ♯ w′

2 ♯ w′

3 .

Next, writing w′ = w1 ▽∩ w, we obtain w′

1, w
′′ ∈ W such that be such that

w1 = w′ ◦ w′

1, w = w′ ◦ w′′, and w′ ♯ w′

1 ♯ w′′ .

Now, writing y = w′

1 ▽∩ w′

2, we also have y1, y2 ∈ W such that

w′

1 = y ◦ y1, w′

2 = y ◦ y2, and y ♯ y1 ♯ y2 .
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We claim that w1 ▽∩ w2 = y ◦ w′. By Lemma 4.11.1, it suffices to show that y ◦ w′ ∈
w1 ▽∩ w2. Using the equalities above, we have

w1 = w′ ◦ w′

1 = (y ◦ w′) ◦ y1 and w2 = w ◦ w′

2 = (y ◦ w′) ◦ (w′′ ◦ y2) .

Now, (y ◦y1) ♯ y2 by the above, and (y ◦y1) ♯ (w
′ ◦w′′) because (y ◦y1)◦ (w

′ ◦w′′) = w′

1 ◦w,
which is defined by construction. Also, notice that (y2◦(w

′◦w′′), x) ∈ W̄ , because (w2, x) ∈
W̄ and w2 = (w′◦w′′)◦y◦y2. Thus, by Lemma 4.11.2, we get ((y◦y1)◦y2◦(w

′◦w′′), x) ∈ W̄ ,
which implies that (y ◦ w′) ♯ y1 ♯ (w′′ ◦ y2). Thus y ◦ w

′ ∈ w1 ▽∩ w2 as required.

Now, we calculate

(w1 ▽∩ w2) ▽∩ w3 = (y ◦ w′) ▽∩ w3

= (y ▽∩ w3) ◦ (w
′
▽∩ w3) (by Lemma 4.11.3)

= w′
▽∩ w3

= w′

= w1 ▽∩ (w2 ▽∩ w3)

For the third equality, observe that (w ◦w′

3) ♯ w
′

2 by assumption, that is, w3 ♯ (y ◦ y2) and
so y ♯ x3. Then by a straightforward calculation (and using Lemma 4.11.1), y ▽∩ w3 = e
for some e ∈ E.

For the fourth equality, observe that w3 = w′ ◦ (w′′ ◦ w3) by assumption. Similar to the
proof of unit expansion above, it is then easy to show that w′

▽∩ w3 = w′.

5 Completeness of BiBBI

This section presents in detail our proof of completeness for (any variant of) BiBBI, stated
earlier as Theorem 3.10. Our approach follows the one previously employed in the literature for
BBI [8] and for CBI [4]: we translate (a given variant of) BiBBI to an equivalent presentation
as a modal logic, and appeal to the well known completeness result for modal logic due to
Sahlqvist (see e.g. [2]). Sahlqvist completeness says, essentially, that when a “normal” modal
logic is augmented with axioms of a particular syntactic form, this modal logic is guaranteed to
be complete with respect to the class of Kripke frames for the logic in which all the axioms are
valid. The main technical challenges are: firstly, to reformulate BiBBI as a set of modal logic
axioms of the required Sahlqvist form; and, secondly, to show that these Sahlqvist axioms are
derivable when translated back into BiBBI. Unsurprisingly, the weak distribution law presents
the greatest difficulty on both counts.

We begin by recalling the standard definitions of validity and provability in normal modal
logic over a suitably chosen signature of modalities (called a “modal similarity type” in [2]).

Definition 5.1. A modal logic formula is built from propositional variables in V using the
classical connectives, the 0-ary modalities ⊤∗ and U, and the binary modalities ∗,⊸,▽ and ^.

Definition 5.2. A modal frame is given by 〈W, ◦,⊸,▽,^, E, U〉, where ◦, ⊸, ▽, and ^ all
have type W ×W → P(W ), and E,U ⊆ W .

A valuation for a modal frame M = 〈W, . . .〉 is as usual given by a function ρ : V → P(W ).
The forcing relation w |=ρ A is defined by induction on A in the standard way in modal logic,
i.e. as for BBI in the case of propositional variables and classical connectives, with the following
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clauses for the modalities:

w |=ρ ⊤∗ ⇔ w ∈ E
w |=ρ U ⇔ w ∈ U

w |=ρ A ∗B ⇔ ∃w1, w2 ∈ W. w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A ⊸ B ⇔ ∃w1, w2 ∈ W. w ∈ w1 ⊸ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A ▽ B ⇔ ∃w1, w2 ∈ W. w ∈ w1 ▽ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A ^ B ⇔ ∃w1, w2 ∈ W. w ∈ w1 ^ w2 and w1 |=ρ A and w2 |=ρ B

As usual, A is valid in M iff w |=ρ A for all w ∈ W and valuations ρ.

Each of the binary functions ◦,⊸,▽,^: W ×W → P(W ) in a modal frame can be equiva-
lently seen as a ternary relation over W (which is the standard approach in modal logic). The
corresponding modalities are each interpreted as a binary “diamond-type” modality of modal
logic. The modal interpretations of ∗ and ⊤∗ are exactly their usual interpretations in BiBBI
(see Defn. 2.5), while the modal interpretations of U, ⊸, ▽ and ^ are related to the BiBBI
interpretations of ⊥∗, —∗, ∗∨ and ∗\ respectively by the use of Boolean negations.

Definition 5.3. The normal modal logic MLBiBBI for (⊤
∗,U, ∗,⊸,▽,^) is given by extending

a standard Hilbert system for classical logic with the following axioms and rules, for all ⊗ ∈
{∗,⊸,▽,^}:

⊥⊗A ⊢ ⊥ and A⊗⊥ ⊢ ⊥ A1 ⊢ A2 B1 ⊢ B2

A1 ⊗B1 ⊢ A2 ⊗B2

(A ∨B)⊗ C ⊢ (A⊗ C) ∨ (B ⊗ C)
A⊗ (B ∨ C) ⊢ (A⊗B) ∨ (A⊗ C)

Next, we recall the Sahlqvist completeness result connecting validity and provability in nor-
mal modal logics augmented with suitably well-behaved axioms, called Sahlqvist formulas. In
fact, we only require so-called “very simple” Sahlqvist formulas for our completeness result.

Definition 5.4. A very simple Sahlqvist antecedent (over (⊤∗,U, ∗,⊸,▽,^)) is given by the
following grammar:

S ::= P | ⊤ | ⊥ | S ∧ S | ⊤∗ | U | S ∗ S | S ⊸ S | S ▽ S | S ^ S

A very simple Sahlqvist formula is an implication A ⊢ B, where A is a very simple Sahlqvist
antecedent and B is any positive modal logic formula (i.e., such that every propositional variable
occurs within the scope of an even number of negations).

Theorem 5.5 (Sahlqvist completeness). Let A be a set of very simple Sahlqvist formulas. If
a modal logic formula is valid in the set of all modal frames satisfying A, then it is provable in
MLBiBBI +A.

We now define a set of Sahlqvist formulas that collectively capture all variants of BiBBI.

Definition 5.6. For a given variant of BiBBI, define the set ABiBBI of very simple Sahlqvist
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formulas as follows:

(1) A ∧ (B ∗ C) ⊢ (B ∧ (C ⊸ A)) ∗ ⊤
(2) A ∧ (B ⊸ C) ⊢ ⊤ ⊸ (C ∧ (A ∗B))
(3) A ∧ (B ▽ C) ⊢ ⊤ ▽ (C ∧ (A ^ B))
(4) A ∧ (B ^ C) ⊢ (B ∧ (C ▽ A)) ^ ⊤
(5) A ∗B ⊢ B ∗A
(6) A ▽ B ⊢ B ▽ A
(7) A ∗ (B ∗ C) ⊢ (A ∗B) ∗ C
(8) A ∗ ⊤∗ ⊢ A and A ⊢ A ∗ ⊤∗

(Associativity) A ▽ (B ▽ C) ⊢ (A ▽ B) ▽ C
(Unit expansion) A ▽ U ⊢ A

(Unit contraction) A ⊢ A ▽ U

(Contraction) A ⊢ A ▽ A
(Weak distribution) (A ∗B) ∧ (C ▽ D) ⊢ (A ∧ ((B ^ D) ⊸ C)) ∗ ⊤

(Classicality) (A ⊸ U) ⊸ U ⊢ A and A ⊢ (A ⊸ U) ⊸ U

where A, B, C, D are considered to be propositional variables, and the named axioms are
included in ABiBBI if and only if the BiBBI variant includes the corresponding property in
Table 1.

Thus, by Theorem 5.5, whenever a modal logic formula is valid in the class of modal frames
satisfying ABiBBI, it is provable in MLBiBBI + ABiBBI. Next, we connect validity in BiBBI to
validity in modal frames.

Lemma 5.7. Let M = 〈W, ◦,⊸,▽,^, E, U〉 be a modal frame satisfying axioms (1)–(4) of
ABiBBI in Definition 5.6. Then we have, for any w,w1, w2 ∈ W :

w ∈ w1 ⊸ w2 ⇔ w2 ∈ w ◦ w1 and w ∈ w1 ^ w2 ⇔ w1 ∈ w2 ▽ w

Consequently, using the above equivalences and alpha-renaming, the clauses for satisfaction of
⊸ and ^ can be rewritten as

w |=ρ A ⊸ B ⇔ ∃w′, w′′. w′′ ∈ w ◦ w′ and w′ |=ρ A and w′′ |=ρ B
w |=ρ A ^ B ⇔ ∃w′, w′′. w′′ ∈ w′

▽ w and w′′ |=ρ A and w′ |=ρ B

(That is, the modal interpretations of A ⊸ B and A ^ B are exactly the BiBBI interpretations
of ¬(A —∗ ¬B) and A ∗\ ¬B, respectively.)

Proof. First, we tackle the bi-implication connecting ⊸ and ◦.

(⇐) Suppose w2 ∈ w ◦ w1. Define a valuation ρ for M by ρ(A) = {w2}, ρ(B) = {w}, ρ(C) =
{w1}. Then, by construction, w2 |=ρ A ∧ (B ∗ C). Since axiom (1) is valid in M by assumption,
w2 |=ρ (B ∧ (C ⊸ A)) ∗ ⊤. That is, w2 ∈ w′◦w′′ for some w′, w′′ such that w′ |=ρ B ∧ (C ⊸ A).
Since w′ |=ρ B, we have w′ = w and thus w |=ρ C ⊸ A, which means exactly that w ∈ w1 ⊸ w2.

(⇒) Suppose w ∈ w1 ⊸ w2. Define a valuation for M by ρ(A) = {w}, ρ(B) = {w1}, ρ(C) =
{w2}. By construction, w |=ρ A ∧ (B ⊸ C). Since axiom (2) is valid in M by assumption,
w |=ρ ⊤ ⊸ (C ∧ (A ∗B)). Thus w′ |=ρ C ∧ (A ∗B) for some w′. Since w′ |=ρ C, we have w′ =
w2 and thus w2 |=ρ A ∗B, i.e. w2 ∈ w ◦ w1 as required.

Next, we similarly establish the bi-implication connecting ^ and ▽.

(⇐) Suppose w1 ∈ w2 ▽ w. Define a valuation for M by ρ(A) = {w1}, ρ(B) = {w2},
ρ(C) = {w}. By construction, w1 |=ρ A ∧ (B ▽ C). Since axiom (3) is valid in M , we have
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w |=ρ ⊤ ▽ (C ∧ (A ^ B). Thus w′ |=ρ C ∧ (A ^ B) for some w′, and since w′ |=ρ C we have
w′ = w and thus w |=ρ A ^ B. That is, w ∈ w1 ^ w2 as required.

(⇒) Suppose w ∈ w1 ^ w2. Define a valuation for M by ρ(A) = {w}, ρ(B) = {w1},
ρ(C) = {w2}. By construction, w |=ρ A ∧ (B ^ C). Since axiom (4) is valid in M , we have
w |=ρ (B ∧ (C ▽ A) ^ ⊤. Thus w′ |=ρ B ∧ (C ▽ A) for some w′, and since w′ |=ρ B we have
w′ = w1 and thus w1 |=ρ C ▽ A. This means exactly that w1 ∈ w2 ▽ w, as required.

In the following, given a modal frame M = 〈W, ◦,⊸,▽,^, E, U〉, we shall write pMq for
the restricted tuple 〈W, ◦, E,▽, U〉.

Lemma 5.8. Let M = 〈W, ◦,⊸,▽,^, E, U〉 be a modal frame satisfying the set ABiBBI of
axioms corresponding to a BiBBI variant, as given by Definition 5.6. Then pMq is a BiBBI-
model for that variant.

Proof. First of all, it is easy to verify that pMq is a basic BiBBI-model, since it satisfies axioms
(5)–(8) in Definition 5.6. It then suffices to show that if an optional Sahlqvist axiom from
Definition 5.6 is valid in M , then M satisfies the corresponding frame property in Table 1 (and
thus, as an immediate consequence, pMq does too). This is a straightforward verification for all
of the axioms except weak distribution and classicality. Since classicality is covered in [4], we
only consider the case of weak distribution here.

Thus, assume the weak distribution axiom of Definition 5.6 is valid in M and suppose that
(x1◦x2)∩(y1 ▽ y2) 6= ∅. That is, we have z ∈ (x1◦x2)∩(y1 ▽ y2) for some z ∈ W . We require to
find a w ∈ W such that y1 ∈ x1◦w and x2 ∈ w ▽ y2. Define a valuation ρ for M by ρ(A) = {x1},
ρ(B) = {x2}, ρ(C) = {y1} and ρ(D) = {y2}. By construction, z |=ρ (A ∗B) ∧ (C ▽ D). Since
the weak distribution axiom is valid in M , we have z |=ρ (A ∧ ((B ^ D) ⊸ C)) ∗ ⊤. That is,
for some z′ we have z′ |=ρ A ∧ ((B ^ D) ⊸ C). Since z′ |=ρ A, we have z′ = x1 and thus
x1 |=ρ (B ^ D) ⊸ C. As M satisfies axioms (1)–(4) by assumption, we can apply Lemma 5.7
to obtain

∃w,w′. w′ ∈ x1 ◦ w and w |=ρ B ^ D and w′ |=ρ C

As w |=ρ C, we have y1 ∈ x1 ◦ w. Using Lemma 5.7 and commutativity of ▽ (forced by the
validity of axiom (6) in M), we obtain from w |=ρ B ^ D that

∃w′, w′′. w′′ ∈ w ▽ w′ and w′′ |=ρ B and w′ |=ρ D

i.e., x2 ∈ w ▽ y2 as required. This completes the proof.

We now formally define the obvious formula translations between modal logic and BiBBI.

Definition 5.9. We define a translation t(−) from BiBBI-formulas to modal logic formulas,
and a symmetric translation u(−) in the opposite direction, as follows:

t(φ) = φ u(φ) = φ
t(⊥∗) = ¬U u(U) = ¬⊥∗

t(¬A) = ¬t(A) u(¬A) = ¬u(A)
t(A ? B) = t(A) ? t(B) u(A ? B) = u(A) ? u(B)
t(A —∗ B) = ¬(t(A) ⊸ ¬B) u(A ⊸ B) = ¬(u(A) —∗ ¬u(B))
t(A ∗∨ B) = ¬(¬t(A) ▽ ¬t(B)) u(A ▽ B) = ¬(¬u(A) ∗∨ ¬u(B))
t(A ∗\ B) = t(A) ^ ¬t(B) u(A ^ B) = u(A) ∗\ ¬u(B)

where φ ∈ {P,⊤,⊥,⊤∗} and ? ∈ {∧,∨,→, ∗}.
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Lemma 5.10. Suppose a BiBBI-formula A is valid in some variant of BiBBI. Then t(A) is
valid in the class of modal frames satisfying the corresponding Sahlqvist axioms ABiBBI given by
Definition 5.6.

Proof. Let M = 〈W, ◦,⊸,▽,^, E, U〉 be a modal frame satisfying the axioms ABiBBI. We
require to show that t(A) is valid in M . By Lemma 5.8, pMq is a BiBBI-model for the variant
of BiBBI determined byABiBBI, and thus A is valid in pMq. Note that since the set of underlying
worlds W is identical in M and pMq, any valuation for M is a valuation for pMq and vice versa.
It thus suffices to show the following bi-implication, for all w ∈ W and valuations ρ:

w |=ρ A (in pMq) ⇔ w |=ρ t(A) (in M)

(The satisfaction relations for BiBBI (Defn. 3.2) and for modal logic (Defn. 5.2) agree where
the logical connectives of both languages, BiBBI and modal logic, overlap; therefore, we do not
disambiguate explicitly between them.) We proceed by structural induction on the formula A.

Cases A = P,⊤,⊥,⊤∗. Immediate since t(A) = A.

Case A = ⊥∗. We have w |=ρ ⊥∗ ⇔ w /∈ U ⇔ w |=ρ ¬U, as required.

Cases A = A1 ∨A2, A1 ∧A2, A1 → A2, A1 ∗A2. These cases are all similar, so we just show the
case A = A1 ∗A2. In that case, using the induction hypotheses for A1 and A2, we have

w |=ρ A1 ∗A2

⇔ ∃w1, w2. w ∈ w1 ◦ w2 and w |=ρ A1 and w |=ρ A2

⇔ ∃w1, w2. w ∈ w1 ◦ w2 and w |=ρ t(A1) and w |=ρ t(A2) (by ind. hyp)
⇔ w |=ρ t(A1) ∗ t(A2)
⇔ w |=ρ t(A1 ∗A2)

Case A = A1 —∗ A2. We have

w |=ρ A1 —∗ A2

⇔ ∀w′, w′′. w′′ ∈ w ◦ w′ and w′ |=ρ A1 implies w′′ |=ρ A2

⇔ ∀w′, w′′. w′′ ∈ w ◦ w′ and w′ |=ρ t(A1) implies w′′ |=ρ t(A2) (by ind. hyp)
⇔ ¬∃w′, w′′. w′′ ∈ w ◦ w′ and w′ |=ρ t(A1) and w′′ |=ρ ¬t(A2)
⇔ w |=ρ ¬(t(A1) ⊸ ¬t(A2)) (Lemma 5.7)
⇔ w |=ρ t(A1 —∗ A2)

Case A = A1
∗∨ A2. We have

w |=ρ A1
∗∨ A2

⇔ ∀w1, w2. w ∈ w1 ▽ w2 implies w1 |=ρ A1 or w2 |=ρ A2

⇔ ∀w1, w2. w ∈ w1 ▽ w2 implies w1 |=ρ t(A1) or w2 |=ρ t(A2) (by ind. hyp)
⇔ ¬∃w1, w2. w ∈ w1 ▽ w2 and w1 |=ρ ¬t(A1) and w2 |=ρ ¬t(A2)
⇔ w |=ρ ¬(¬t(A1) ▽ ¬t(A2))
⇔ w |=ρ t(A1

∗∨ A2)

Case A = A1
∗\ A2. We have

w |=ρ A1
∗\ A2

⇔ ∃w′, w′′. w′′ ∈ w′
▽ w and w′′ |=ρ A1 and w′

2ρ A2

⇔ ∃w′, w′′. w′′ ∈ w′
▽ w and w′′ |=ρ t(A1) and w′

2ρ t(A2) (by ind. hyp)
⇔ ∃w′, w′′. w′′ ∈ w′

▽ w and w′′ |=ρ t(A1) and w′ |=ρ ¬t(A2)
⇔ w |=ρ t(A1) ^ ¬t(A2) (Lemma 5.7)
⇔ w |=ρ t(A1

∗\ A2)

This completes all cases.
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Using Lemma 5.10 and Theorem 5.5, we have that validity of a BiBBI-formula A in some
BiBBI variant implies provability of t(A) in MLBiBBI + ABiBBI. It just remains to connect
modal logic provability to BiBBI-provability.

Lemma 5.11. If a modal logic formula B is provable in MLBiBBI + ABiBBI, then u(B) is
provable in the corresponding variant of BiBBI.

Proof. We have to show that all the axioms and rules of normal modal logic (see Definition 5.3)
and all the ABiBBI axioms (see Definition 5.6) are derivable in the appropriate variant of BiBBI
under the translation u(−). For the most part this is a straightforward (if tedious) exercise;
the main exceptions are the residuation axioms and the weak distribution axiom. We take for
granted that BiBBI-provability is closed under the usual classical principles, in particular modus
ponens and the De Morgan laws for Boolean negation ¬.

First, we treat the normal modal logic axioms that govern the interaction of the binary
modalities with ⊥.

Cases A ∗ ⊥ ⊢ ⊥ and ⊥ ∗A ⊢ ⊥. We just show the first case, as the other is similar. We have to
show that u(A) ∗ ⊥ ⊢ u(A) is provable in the basic proof system for BiBBI (see Definition 3.3).
Write B = u(A). We have ⊥ ⊢ B —∗ B provable, so by the residuation rules for ∗ and —∗, we
have that ⊥ ∗B ⊢ B is provable and thus B ∗ ⊥ ⊢ B is provable by commutativity of ∗.

Cases A ⊸ ⊥ ⊢ ⊥ and ⊥ ⊸ A ⊢ ⊥. For the first case, we have to show that ¬(u(A) —∗ ⊤) ⊢ ⊥
is provable. Write B = u(A). Certainly ⊤ ∗B ⊢ ⊤ is provable, so by residuation B —∗ ⊤ is
provable, and thus ¬(B —∗ ⊤) ⊢ ⊥ follows by contraposition.

For the second case, we have to show that ¬(⊥ —∗ u(A)) ⊢ ⊥ is provable. Write B = u(A).
We already know that ⊤ ∗ ⊥ ⊢ ⊥ is provable (see the case above). Thus, since ⊥ ⊢ B is provable,
so is ⊤ ∗ ⊥ ⊢ B. By residuation, ⊥ —∗ B is then provable, and thus we get ¬(⊥ —∗ B) ⊢ ⊥ as
required by contraposition.

Cases A ▽ ⊥ ⊢ ⊥ and ⊥ ▽ A ⊢ ⊥. We just show the first case, as the other is similar. We
have to show that ¬(¬u(A) ∗∨ ⊤) ⊢ ⊥ is provable. Write B = ¬u(A). Trivially, ⊤ ∗\ B ⊢ ⊤ is
provable. Thus, by the residuation rules for ∗∨ and ∗\ , so is B ∗∨ ⊤. We then get ¬(B ∗∨ ⊤) ⊢ ⊥
by contraposition.

Cases A ^ ⊥ ⊢ ⊥ and ⊥ ^ A ⊢ ⊥. For the first case, we have to show u(A) ∗\ ⊤ ⊢ ⊥ is prov-
able. Write B = u(A). We trivially have B ∗\ ⊥ ⊢ ⊤ provable, so by residuation B ⊢ ⊥ ∗∨ ⊤
is provable. By commutativity of ∗∨ (provided by basic provability in BiBBI) we then get
B ⊢ ⊤ ∗∨ ⊥, and so by residuation B ∗\ ⊤ ⊢ ⊥ as required.

For the second case, we have to show ⊥ ∗\ ¬u(A) ⊢ ⊥ is provable. Writing B = ¬u(A), we
trivially have ⊥ ⊢ B ∗∨ ⊥ provable. Thus, by residuation, ⊥ ∗\ B ⊢ ⊥ is provable.

Next, we treat the normal modal logic axioms showing that the binary modalities distribute
over ∨ (in both argument positions).

Case (A ∨B) ∗ C ⊢ (A ∗ C) ∨ (B ∗ C). We need to show that the following is provable:

(u(A) ∨ u(B)) ∗ u(C) ⊢ (u(A) ∗ u(C)) ∨ (u(B) ∗ u(C))

Write A′ = u(A), B′ = u(B), C ′ = u(C), and D = (A′ ∗ C ′) ∨ (B′ ∗ C ′). Trivially, we
have A′ ∗ C ′ ⊢ D provable, so by residuation A′ ⊢ C ′ —∗ D is provable. By the same token,
B′ ⊢ C ′ —∗ D is also provable. Thus, A′ ∨B′ ⊢ C ′ —∗ D is provable, and so (A′ ∨B′) ∗ C ′ ⊢ D
follows by residuation as required.

Case A ∗ (B ∨ C) ⊢ (A ∗B) ∨ (A ∗ C). Similar to the previous case, additionally using the com-
mutativity of ∗.
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Case (A ∨B) ⊸ C ⊢ (A ⊸ C) ∨ (B ⊸ C). We need to show that the following is provable:

¬((u(A) ∨ u(B)) —∗ ¬u(C)) ⊢ ¬(u(A) —∗ ¬u(C)) ∨ ¬(u(B) —∗ ¬u(C))

Write A′ = u(A), B′ = u(B), C ′ = ¬u(C), D = A′ —∗ C ′ and E = B′ —∗ C ′. First, note
that D ∧ E ⊢ A′ —∗ C ′ is trivially provable. Thus, using residuation and commutativity of ∗,
we have A′ ⊢ (D ∧ E) —∗ C ′ provable. By the same token, B′ ⊢ (D ∧ E) —∗ C ′ is also provable.
Thus, A′ ∨B′ ⊢ (D ∧ E) —∗ C ′ is provable. By residuation and ∗-commutativity, we then ob-
tain D ∧ E ⊢ (A′ ∨B′) —∗ C ′. We then get ¬((A′ ∨B′) —∗ C ′) ⊢ ¬D ∨ ¬E by contraposition as
required.

Case A ⊸ (B ∨ C) ⊢ (A ⊸ B) ∨ (A ⊸ C). We require to prove the following:

¬(u(A) —∗ (¬u(B) ∧ ¬u(C))) ⊢ ¬(u(A) —∗ ¬u(B)) ∨ ¬(u(A) —∗ ¬u(C))

Write A′ = u(A), B′ = ¬u(B), C ′ = ¬u(C), D = A′ —∗ B′ and E = A′ —∗ C ′. We trivially have
D ∧ E ⊢ A′ —∗ B′. By residuation we get (D ∧ E) ∗A′ ⊢ B′, and similarly (D ∧ E) ∗A′ ⊢ C ′, so
we can get (D ∧ E) ∗A′ ⊢ B′ ∧ C ′. Then, by residuation, we have D ∧ E ⊢ A′ —∗ (B′ ∧ C ′), and
so by contraposition we can obtain ¬(A′ —∗ (B′ ∧ C ′)) ⊢ ¬D ∨ ¬E, as required.

Case (A ∨B) ▽ C ⊢ (A ▽ C) ∨ (B ▽ C). We need to show that the following is provable:

¬((¬u(A) ∧ ¬u(B)) ∗∨ ¬u(C)) ⊢ ¬(¬u(A) ∗∨ ¬u(C)) ∨ ¬(¬u(B) ∗∨ ¬u(C))

Write A′ = ¬u(A), B′ = ¬u(B), C ′ = ¬u(C), D = A′ ∗∨ C ′ and E = B′ ∗∨ C ′. We can
trivially prove D ∧ E ⊢ A′ ∗∨ C ′. By commutativity of ∗∨ and the residuation rules, we can get
(D ∧ E) ∗\ C ′ ⊢ A′. By a similar line of reasoning, we can also prove (D ∧ E) ∗\ C ′ ⊢ B′, so we
can prove (D ∧ E) ∗\ C ′ ⊢ A′ ∧B′. Using residuation and commutativity again, we then obtain
D ∧ E ⊢ (A′ ∧B′) ∗∨ C ′. Finally, by contraposition we get ¬((A′ ∧B′) ∗∨ C ′) ⊢ ¬D ∨ ¬E, as
required.

Case A ▽ (B ∨ C) ⊢ (A ▽ B) ∨ (A ▽ C). Similar to the previous case.

Case (A ∨B) ^ C ⊢ (A ^ C) ∨ (B ^ C). We need to prove:

(u(A) ∨ u(B)) ∗\ ¬u(C) ⊢ (u(A) ∗\ ¬u(C)) ∨ (u(B) ∗\ ¬u(C))

Write A′ = u(A), B′ = u(B), C ′ = ¬u(C), D = A′ ∗\ C ′ and E = B′ ∗\ C ′. We easily
have A′ ∗\ C ′ ⊢ D ∨ E provable, so by residuation we get A′ ⊢ C ′ ∗∨ (D ∨ E). Similarly, we can
prove B′ ⊢ C ′ ∗∨ (D ∨ E), and so we obtain A′ ∨B′ ⊢ C ′ ∗∨ (D ∨ E). By residuation, we then
get (A′ ∨B′) ∗\ C ′ ⊢ D ∨ E as required.

Case A ^ (B ∨ C) ⊢ (A ^ B) ∨ (A ^ C). We need to prove:

u(A) ∗\ (¬u(B) ∧ ¬u(C)) ⊢ (u(A) ∗\ ¬u(B)) ∨ (u(A) ∗\ ¬u(C))

Write A′ = u(A), B′ = ¬u(B), C ′ = ¬u(C), D = A′ ∗\ B′ and E = A′ ∗\ C ′. We
can trivially prove A′ ∗\ B′ ⊢ D ∨ E. By residuation and commutativity of ∗∨ we can obtain
A′ ∗\ (D ∨ E) ⊢ B′. By a similar argument we can also obtain A′ ∗\ (D ∨ E) ⊢ C ′, so we have
A′ ∗\ (D ∨ E) ⊢ B′ ∧ C ′. Then, applying residuation and commutativity again, we can derive
A′ ∗\ (B′ ∧ C ′) ⊢ D ∨ E as required.

Next on our list are the monotonicity rules for the binary modalities in normal modal logic.
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Case: monotonicity rule for ∗. We have to show that the following rule is admissible:

u(A1) ⊢ u(B1) u(A2) ⊢ u(B2)

u(A1) ∗ u(A2) ⊢ u(B1) ∗ u(B2)

We are immediately done since the above is an instance of the usual monotonicity rule for ∗ in
BBI (cf. Definition 2.2).

Case: monotonicity rule for ⊸. We have to show that the following rule is admissible:

u(A1) ⊢ u(B1) u(A2) ⊢ u(B2)

¬(u(A1) —∗ ¬u(A2)) ⊢ ¬(u(B1) —∗ ¬u(B2))

Write A′

1 = u(A1), A
′

2 = u(A2), B
′

1 = u(B1) and B′

2 = u(B2). Trivially, B
′

1 —∗ ¬B′

2 ⊢ B′

1 —∗ ¬B′

2

is provable. By applying residuation and contraposition, we can deriveB′

2 ⊢ ¬((B′

1 —∗ ¬B′

2) ∗B
′

1).
Since A′

2 ⊢ B′

2 is provable by assumption, we can obtain A′

2 ⊢ ¬((B′

1 —∗ ¬B′

2) ∗B
′

1) by transitiv-
ity of implication. Using residuation, commutativity of ∗ and contraposition, this is equivalent
to B′

1 ⊢ (B′

1 —∗ ¬B′

2) —∗ ¬A′

2. Since A′

1 ⊢ B′

1 is provable by assumption, we have by transitivity
A′

1 ⊢ (B′

1 —∗ ¬B′

2) —∗ ¬A′

2. Finally, using residuation, commutativity, and contraposition again,
this is equivalent to the required ¬(A′

1 —∗ ¬A′

2) ⊢ ¬(B′

1 —∗ ¬B′

2).

Case: monotonicity rule for ▽. We have to show that the following rule is admissible:

u(A1) ⊢ u(B1) u(A2) ⊢ u(B2)

¬(¬u(A1)
∗∨ ¬u(A2)) ⊢ ¬(¬u(B1)

∗∨ ¬u(B2))

Using contraposition, we can rewrite this rule in the following equivalent form:

¬u(B1) ⊢ ¬u(A1) ¬u(B2) ⊢ ¬u(A2)

¬u(B1)
∗∨ ¬u(B2) ⊢ ¬u(A1)

∗∨ ¬u(A2)

which is an instance of the monotonicity rule for ∗∨ in the basic BiBBI system (see Defn. 3.3).

Case: monotonicity rule for ^. We have to show that the following rule is admissible:

u(A1) ⊢ u(B1) u(A2) ⊢ u(B2)

u(A1)
∗\ ¬u(A2) ⊢ u(B1)

∗\ ¬u(B2)

Write A′

1 = u(A1), A
′

2 = u(A2), B
′

1 = u(B1) and B′

2 = u(B2)
′. Trivially, B′

1

∗\ ¬B′

2 ⊢ B′

1

∗\ ¬B′

2

is provable. By residuation, B′

1 ⊢ ¬B′

2

∗∨ (B′

1

∗\ ¬B′

2) is then provable. Since A′

1 ⊢ B′

1 is prov-
able by assumption, we obtain A′

1 ⊢ ¬B′

2

∗∨ (B′

1

∗\ ¬B′

2) by transitivity. Using residuation, con-
traposition and commutativity of ∗∨, this is equivalent to B′

2 ⊢ ¬(A′

1

∗\ (B1
∗\ ¬B′

2)). Since
A′

2 ⊢ B′

2 is provable by assumption, we then have A′

2 ⊢ ¬(A′

1

∗\ (B1
∗\ ¬B′

2)) by transitivity.
Using residuation, commutativity and contraposition once more, this is equivalent to the re-
quired A′

1

∗\ ¬A′

2 ⊢ B′

1

∗\ ¬B′

2.

This completes the cases for all the principles of normal modal logic MLBiBBI. Next, we
must examine the Sahlqvist axioms given by Definition 5.6. We begin by treating the axioms
(1)–(8), bearing in mind that we can still only assume the proof principles of basic BiBBI (cf.
Definition 3.3).

Case: axiom (1), A ∧ (B ∗ C) ⊢ (B ∧ (C ⊸ A)) ∗ ⊤. We need to prove:

u(A) ∧ (u(B) ∗ u(C)) ⊢ (u(B) ∧ ¬(u(C) —∗ ¬u(A))) ∗ ⊤

26



Write A′ = u(A), B′ = u(B), C ′ = u(C), D = (B′∧¬(C ′ —∗ ¬A′))∗⊤ and E = C ′ —∗ (A′ → D).
We trivially have ¬A′ ⊢ A′ → D a classical tautology. Since C ′ ∗ (C ′ —∗ ¬A′) ⊢ ¬A′ is easily
provable in BBI, we obtain C ′ ∗ (C ′ —∗ ¬A′) ⊢ A′ → D by transitivity. Using ∗-commutativity,
residuation and contraposition, this is equivalent to ¬(C ′ —∗ (A′ → D)) ⊢ ¬(C ′ —∗ ¬A′), i.e.
¬E ⊢ ¬(C ′ —∗ ¬A′). Thus, using the monotonicity rule for ∗ and the fact that C ′ ⊢ ⊤ is provable,
we can obtain (B′ ∧ ¬E) ∗ C ′ ⊢ (B′ ∧ ¬(C ′ —∗ ¬A′)) ∗ ⊤, that is, (B′ ∧ ¬E) ∗ C ′ ⊢ D. Since
D ⊢ A′ → D is a tautology, we have by transitivity (B′ ∧ ¬E) ∗ C ′ ⊢ A′ → D and then by resid-
uation B′ ∧ ¬E ⊢ C ′ —∗ (A′ → D), i.e., B′ ∧ ¬E ⊢ E. This is classically equivalent to B′ ⊢ E,
i.e. B′ ⊢ C ′ —∗ (A′ → D). By residuation, this then yields A′ ∧ (B′ ∗ C ′) ⊢ D as required.

Case: axiom (2), A ∧ (B ⊸ C) ⊢ ⊤ ⊸ (C ∧ (A ∗B)). We need to prove:

u(A) ∧ ¬(u(B) —∗ ¬u(C)) ⊢ ¬(⊤ —∗ (¬u(C) ∨ ¬(u(A) ∗ u(B))))

Write A′ = u(A), B′ = u(B), C ′ = ¬u(C), D = ⊤ —∗ (C ′ ∨ ¬(A′ ∗ B′)) and E = (A′ ∧
D) ∗ B′. We easily have A′ ∧D ⊢ A′ provable, so by the monotonicity rule for ∗ we can ob-
tain (A′ ∧D) ∗B′ ⊢ A′ ∗B′, i.e. E ⊢ A′ ∗B′. Using contraposition, we get ¬(A′ ∗B′) ⊢ ¬E.
Consequently, we can derive C ′ ∨ ¬(A′ ∗B′) ⊢ C ′ ∨ ¬E. As D ∗B′ ⊢ C ′ ∨ ¬(A′ ∗B′) is easily
derivable in BBI, we obtainD ∗B′ ⊢ C ′ ∨ ¬E by transitivity. By residuation this is equivalent to
D ⊢ B′ —∗ (C ′ ∨ ¬E), and sinceA′ ∧D ⊢ D is trivially derivable we getA′ ∧D ⊢ B′ —∗ (C ′ ∨ ¬E)
by transitivity. Thus, by residuation, we get (A′ ∧D) ∗B ⊢ C ′ ∨ ¬E, that is, E ⊢ C ′ ∨ ¬E. This
is classically equivalent to E ⊢ C ′, i.e., (A′ ∧D) ∗B ⊢ C ′. Using residuation and contraposition,
this rearranges to A′ ∧ ¬(B′ —∗ C ′) ⊢ ¬D as required.

Case: axiom (3), A ∧ (B ▽ C) ⊢ ⊤ ▽ (C ∧ (A ^ B)). We need to prove:

u(A) ∧ ¬(¬u(B) ∗∨ ¬u(C)) ⊢ ¬(⊥ ∗∨ (¬u(C) ∨ ¬(u(A) ∗\ ¬u(B))))

Write A′ = u(A), B′ = ¬u(B), C ′ = ¬u(C), D = ⊥ ∗∨ (C ′ ∨ ¬(A′ ∗\ B′)) and E =
(A′ ∧D) ∗\ B′. We trivially can prove A′ ∗\ B′ ⊢ A′ ∗\ B′, which by residuation is equivalent to
A′ ⊢ B′ ∗∨ (A′ ∗\ B′). As A′ ∧D ⊢ A′ is trivially provable, we have A′ ∧D ⊢ B′ ∗∨ (A′ ∗\ B′)
by transitivity and thus ¬(A′ ∗\ B′) ⊢ ¬((A′ ∧D) ∗\ B′) by residuation and contraposition.
That is, we have ¬(A′ ∗\ B′) ⊢ ¬E. Consequently, we can derive C ′ ∨ ¬(A′ ∗\ B′) ⊢ C ′ ∨ ¬E.
Since ⊥ ⊢ B′ is trivially provable, we obtain ⊥ ∗∨ (C ′ ∨ ¬(A′ ∗\ B′)) ⊢ B′ ∗∨ (C ′ ∨ ¬E) by the
monotonicity rule for ∗∨, that is, D ⊢ B′ ∗∨ (C ′ ∨ ¬E). Since A′ ∧D ⊢ D is trivially prov-
able, we have A′ ∧D ⊢ B′ ∗∨ (C ′ ∨ ¬E) by transitivity. By residuation, this is equivalent to
(A′ ∧D) ∗∨ B′ ⊢ C ′ ∨ ¬E, that is, E ⊢ C ′ ∨ ¬E. This is classically equivalent to E ⊢ C ′, i.e.,
(A′ ∧D) ∗\ B′ ⊢ C ′. This can then be rewritten to the required A′ ∧ ¬(B′ ∗∨ C ′) ⊢ ¬D using
residuation and contraposition.

Case: axiom (4), A ∧ (B ^ C) ⊢ (B ∧ (C ▽ A)) ^ ⊤. We need to prove:

u(A) ∧ (u(B) ∗\ ¬u(C)) ⊢ (u(B) ∧ ¬(¬u(C) ∗∨ ¬u(A))) ∗\ ⊥

Write A′ = u(A), B′ = u(B), C ′ = ¬u(C), D = (B′ ∧ ¬(C ′ ∗∨ ¬A′)) ∗\ ⊥ and E = C ′ ∗∨
(D ∨ ¬A′). We can trivially prove both ¬A′ ⊢ D ∨ ¬A′ and C ′ ⊢ C ′, so by applying the rule
for monotonicity of ∗∨ we can prove C ′ ∗∨ ¬A′ ⊢ C ′ ∗∨ (D ∨ ¬A′), i.e., C ′ ∗∨ ¬A′ ⊢ E. By con-
traposition, we obtain ¬E ⊢ ¬(C ′ ∗∨ ¬A′). Thus we can derive B′ ∧ ¬E ⊢ B′ ∧ ¬(C ′ ∗∨ ¬A′).
Now, since ¬C ′ ⊢ ¬⊥ is a classical tautology, we can apply the translated monotonicity rule for
^ (see the relevant case above) to obtain (B′ ∧ ¬E) ∗\ C ′ ⊢ (B′ ∧ ¬(C ′ ∗∨ ¬A′)) ∗\ ⊥, that is,
(B′ ∧ ¬E) ∗\ C ′ ⊢ D. SinceD ⊢ D ∨ ¬A′ is derivable, we then obtain (B′ ∧ ¬E) ∗\ C ′ ⊢ D ∨ ¬A′

by transitivity. Residuation then yields B′ ∧ ¬E ⊢ C ′ ∗∨ (D ∨ ¬A′), that is, B′ ∧ ¬E ⊢ E. This
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is classically equivalent to B′ ⊢ E, i.e., B′ ⊢ C ′ ∗∨ (D ∨ ¬A′). Using residuation and contraposi-
tion, this rearranges to A′ ∧ (B′ ∗\ C ′) ⊢ D as required.

Case: axiom (5), A ∗B ⊢ B ∗A. Immediate: The translation of this axiom is an instance of
BBI’s axiom of commutativity of ∗.

Case: axiom (6), A ▽ B ⊢ B ▽ A. We have to prove:

¬(¬u(A) ∗∨ ¬u(B)) ⊢ ¬(¬u(B) ∗∨ ¬u(A))

By contraposition, this is equivalent to ¬u(B) ∗∨ ¬u(A) ⊢ ¬u(A) ∗∨ ¬u(B), which is just an in-
stance of BiBBI’s axiom of commutativity of ∗∨.

Case: axiom (7), A ∗ (B ∗ C) ⊢ (A ∗B) ∗ C. Immediate: The translation of this axiom is an
instance of BBI’s axiom of associativity of ∗.

Case: axiom (8), A ∗ ⊤∗ ⊢ A and A ⊢ A ∗ ⊤∗. Immediate: The translations of these axioms are
both instances of the corresponding unit law axioms in BBI.

Now it just remains to treat the optional axioms in Definition 5.6. For each such axiom, we
may assume that BiBBI provability includes the relevant axiom from Table 1.

Case: (Associativity), A ▽ (B ▽ C) ⊢ (A ▽ B) ▽ C. We require to show that the following is
provable:

¬(¬u(A) ∗∨ (¬u(B) ∗∨ ¬u(C))) ⊢ ¬((¬u(A) ∗∨ ¬u(B)) ∗∨ ¬u(C))

Write A′ = ¬u(A), B′ = ¬u(B), and C ′ = ¬u(C). We have C ′ ∗∨ (B′ ∗∨ A′) ⊢ (C ′ ∗∨ B′) ∗∨ A′

provable (since we are in BiBBI with associativity). Using commutativity of ∗∨, this can be
rewritten to (A′ ∗∨ B′) ∗∨ C ′ ⊢ A′ ∗∨ (B′ ∗∨ C ′). By contraposition, we then obtain the required
¬(A′ ∗∨ (B′ ∗∨ C ′)) ⊢ (¬(A′ ∗∨ B′) ∗∨ C ′).

Case: (Unit expansion), A ▽ U ⊢ A. We require to prove the following:

¬(¬u(A) ∗∨ ⊥∗) ⊢ u(A)

Write B = u(A). Since the unit expansion axiom of BiBBI is available, ¬B ⊢ ¬B ∗∨ ⊥∗ is
provable, and thus ¬(¬B ∗∨ ⊥∗) ⊢ B is provable by contraposition.

Case: (Unit contraction), A ⊢ A ▽ U. We require to prove the following:

u(A) ⊢ ¬(¬u(A) ∗∨ ⊥∗)

Write B = u(A). Since the unit contraction axiom of BiBBI is available, ¬B ∗∨ ⊥∗ ⊢ ¬B is
provable, and thus B ⊢ ¬(¬B ∗∨ ⊥∗) is provable by contraposition.

Case: (Contraction), A ⊢ A ▽ A. Similar to the case of unit contraction above.

Case: (Classicality), (A ⊸ U) ⊸ U ⊢ A and A ⊢ (A ⊸ U) ⊸ U. This case is covered in detail
in [4] (see Proposition 4.3.2 in that paper).

Case: (Weak distribution), (A ∗B) ∧ (C ▽ D) ⊢ (A ∧ ((B ^ D) ⊸ C)) ∗ ⊤. We require to
check that the following is provable:

(u(A) ∗ u(B)) ∧ ¬(¬u(C) ∗∨ ¬u(D)) ⊢ (u(A) ∧ ¬((u(B) ∗\ ¬u(D)) —∗ ¬u(C)) ∗ ⊤

Write A′ = u(A), B′ = u(B), C ′ = ¬u(C), D′ = ¬u(D), E = (B′ ∗\ D′) —∗ C ′, F = (A′∧¬E)∗⊤
and G = B′ —∗ ((C ′ ∗∨ D′) ∨ F ). We require to prove (A′ ∗B′) ∧ ¬(C ′ ∗∨ D′) ⊢ F .
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First, note that B′ ⊢ (B′ ∗\ D′) ∗∨ D′ is easily provable using residuation and commutativity
of ∗∨. Hence, by the rule for monotonicity of ∗, we have E ∗B′ ⊢ E ∗ ((B′ ∗\ D′) ∗∨ D′). Now,
as E ∗ ((B′ ∗\ D′) ∗∨ D′) ⊢ (E ∗ (B′ ∗\ D′)) ∗∨ D′ is an instance of the BiBBI weak distribution
axiom, E ∗B′ ⊢ (E ∗ (B′ ∗\ D′)) ∗∨ D′ is provable by transitivity. Using ∗∨-commutativity and
residuation, this rearranges to (E ∗B′) ∗\ D′ ⊢ E ∗ (B′ ∗\ D′). Since E = (B′ ∗\ D′) —∗ C ′,
we easily have E ∗ (B′ ∗\ D′) ⊢ C ′ using residuation, and so (E ∗B′) ∗\ D′ ⊢ C ′ is provable by
transitivity. Using residuation and commutativity again, this rewrites to E ∗B′ ⊢ C ′ ∗∨ D′. By
weakening for ∨, we can then prove E ∗B′ ⊢ (C ′ ∗∨ D′) ∨ F , which by residuation is equivalent
to E ⊢ B′ —∗ ((C ′ ∗∨ D′) ∨ F ), that is, E ⊢ G. By contraposition and standard principles for
∧, we can derive A′ ∧ ¬G ⊢ A′ ∧ ¬E. Since B′ ⊢ ⊤ is trivially derivable, we can apply the
monotonicity rule for ∗ to obtain (A′ ∧ ¬G) ∗B′ ⊢ (A′ ∧ ¬E) ∗ ⊤, that is, (A′ ∧ ¬G) ∗B′ ⊢ F .
By ∨-weakening, (A′ ∧ ¬G) ∗B′) ⊢ (C ′ ∗∨ D′) ∨ F is also derivable. By residuation, we can then
prove A′ ∧ ¬G ⊢ B′ —∗ ((C ′ ∗∨ D′) ∨ F ), that is, A′ ∧ ¬G ⊢ G, which is classically equivalent to
A′ ⊢ G. Expanding the definition of G, this is equal to A′ ⊢ B′ —∗ ((C ′ ∗∨ D′) ∨ F ), which can be
rewritten using residuation and contraposition as (A′ ∗B′) ∧ ¬(C ′ ∗∨ D′) ⊢ F . This completes
this case, and the entire proof.

Lemma 5.12. If u(t(A)) is provable in (some variant of) BiBBI then so is A.

Proof. (Sketch) The formula u(t(A)) differs from A only in that some subformulas C of A are
replaced by their double negations ¬¬C, which clearly does not affect provability in a classical
system. The result can be proven formally by a straightforward structural induction on A.

We now have everything needed to prove our completeness result (stated as Theorem 3.10):
every formula valid in a given variant of BiBBI is provable in that variant.

Proof of Theorem 3.10. Suppose A is valid in some BiBBI variant. By Lemma 5.10, t(A)
is then valid in the class of modal frames satisfying the Sahlqvist formulas ABiBBI given by
Definition 5.6. Using the Sahlqvist completeness theorem (Theorem 5.5), t(A) is provable in
MLBiBBI +ABiBBI. Thus, by Lemma 5.11, u(t(A)) is provable in the corresponding variant of
BiBBI. By Lemma 5.12, A is then provable in this BiBBI variant as required.

6 Conclusions

In this paper, we formulate and investigate a bi-intuitionistic bunched logic BiBBI, where the
multiplicative disjunction ∗∨ and its adjoint co-implication ∗\ have equal status to the usual mul-
tiplicative conjunction ∗ and its adjoint implication —∗; and, furthermore, all the multiplicatives
are treated essentially intuitionistically. From the point of view of linear and modal logic, BiBBI
can be seen as a free combination of classical logic with Hyland and de Paiva’s (multiplicative)
FILL [16]. From the bunched logic perspective, BiBBI is an extension of BBI, and CBI is a
special case of BiBBI obtained by imposing a “classicality” condition (cf. Proposition 3.7).

We have formulated a Kripke frame semantics for BiBBI in which various logical axioms of
FILL have natural semantic correspondents as first-order conditions on BiBBI-models (cf. Ta-
ble 1). We provide a completeness proof for this semantics, based on the Sahlvist completeness
theorem for modal logic, and moreover our proof provides completeness for any variant of BiBBI
given by a choice of logical principles from Table 1.

We also investigate BiBBI-models obeying the weak distribution law,

A ∗ (B ∗∨ C) ⊢ (A ∗B) ∗∨ C,
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which is of special importance in connecting the (∗,—∗,⊤∗) fragment of BiBBI to its otherwise
disjoint ( ∗∨, ∗\ ,⊥∗) fragment. Specifically, we find that heap-like models of BiBBI, as used in
separation logic, can be obtained by interpreting ∗∨ using natural notions of heap intersection.
Perhaps unfortunately, this comes at the expense of either the associativity of ∗∨ or of the unit
law A ∗∨ ⊥∗ ≡ A. However, we provide a general construction that, given a sufficiently well-
behaved BBI-model, yields a more complex BiBBI-models in which these laws do hold, based
on pairing every world in the original model with a “larger” one (Theorem 4.12).

As for proof theory, we remark that it ought to be straightforward to construct a cut-
eliminating display calculus (cf. [1, 3]) for any variant of BiBBI by combining a display calculus
for classical logic with the display calculus for the multiplicative fragment of FILL given by
Clouston et al [9].

We hope, but do not yet know, that there might exist applications of BiBBI to program
verification based on separation logic, beyond those already provided by BBI. As in linear
logic, it seems more difficult to reason intuitively using multiplicative disjunction than using
multiplicative conjunction. However, the existence of natural heap models of BiBBI gives us
some cause for cautious optimism; we hope to explore this direction further in future work.
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