
Proving Copyless Message Passing

Jules Villard1 Étienne Lozes1 Cristiano Calcagno2

1LSV, ENS Cachan, CNRS

2Imperial College, London

Young Researchers_CONCUR 2009
(and also, APLAS’09)

Outline

Copyless Message Passing
Language Highlights
Contracts

Local Reasoning for Copyless Message Passing
Separation Logic
Separation Logic Extended
Proofs in Separation Logic. . .
. . . Extended
Proof Sketch

Conclusion

Inspiration: Singularity [Fähndrich & al. ’06]

Singularity: a research project and an operating system.
I No memory protection: all processes share the same address

space
I Memory isolation is verified at compile time (Sing] language)
I No shared resources. Instead, processes communicate by

copyless message passing
I Communications are ruled by contracts
I Many guarantees ensured by the compiler:

• race freedom (process isolation)
• progress
• contract obedience

1 / 25

Sing] communication model

I Channels are bidirectional and asynchronous
channel = pair of FIFO queues

I Channels are made of two endpoints
similar to socket model

I Endpoints are allocated, disposed of, and may be
communicated through channels
under some conditions, similar to internal mobility in π-calculus

I Communications are ruled by user-defined contracts
similar to session types

2 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

*z = receive(cell,f);

3 / 25

In this talk [APLAS’09]

I Define a simple model of this language

I Provide a proof system based on Separation Logic

• Validate programs w.r.t. ownership
• Compositional approach
• Provide a tool for annotated programs

4 / 25

In this talk [APLAS’09]

I Define a simple model of this language

I Provide a proof system based on Separation Logic
• Validate programs w.r.t. ownership
• Compositional approach
• Provide a tool for annotated programs

4 / 25

Syntax of the Programming Language

Expressions and Boolean Expressions
E ::= x ∈ Var | ` ∈ Loc | ε ∈ Endpoint | v ∈ Val
B ::= E = E | B and B | not B

Atomic commands
c ::= x = E

| x = new() | dispose(x) | x = E→f | x→f = E | . . .

Programs
p ::= c | p; p | p||p | if B then p else p | while B {p} | local x in p

5 / 25

Syntax of atomic commands (continued)

c ::= ...
| (e, f) = open(C) (creates a channel with endpoints e,f)
| close (E,E’) (channel disposal)
| send(m, E, E’) (sends message m over endpoint E)
| x = receive(m, E) (receives message m over endpoint E)

Comments

I m is a message identifier, not the value of the message

I both endpoints of a channel must be closed together

6 / 25

Channels, Contracts

Processes communicate through channels.
I A channel is made of two endpoints.
I It is bidirectional and asynchronous.
I It must follow a contract.

Contracts dictate which sequences of messages are admissible.
I It is a finite state machine, where arrows are labeled by a

message’s name and a direction: send (!) or receive (?).
I Dual endpoints of a channel follow dual contracts

(C̄ = C [?↔!]).
I We consider leak-free contracts that ensure absence of

memory leaks

7 / 25

Contract Example

message ack
message cell
message close_me

contract C {
initial state transfer { !cell -> wait;

!close_me -> end; }
state wait { ?ack -> transfer; }
final state end {}

}

C: transfer wait_ack

end

!cell

!close_me

?ack

8 / 25

Our tool

heaps that hop!

Outline

Copyless Message Passing
Language Highlights
Contracts

Local Reasoning for Copyless Message Passing
Separation Logic
Separation Logic Extended
Proofs in Separation Logic. . .
. . . Extended
Proof Sketch

Conclusion

Separation Logic

Separation Logic [O’Hearn 01, Reynolds 02, . . .]

I An assertion language to describe states
I An extension of Hoare Logic

11 / 25

Assertion Language

Syntax

E ::= x | n ∈ N expressions
A ::= E1 = E2 | E1 6= E2 stack predicates

| emph | E1 7→ E2 heap predicates
| A1 ∗ A2 formulas

Semantics

(s, h) � E1 = E2 iff JE1Ks = JE2Ks
(s, h) � emph iff dom(h) = ∅
(s, h) � E1 7→ E2 iff dom(h) = {JE1Ks} & h(JE1Ks) = JE2Ks
(s, h) � A1 ∗ A2 iff ∃h1, h2. dom(h1) ∩ dom(h2) = ∅

& h = h1 ∪ h2
& (s, h1) � A1 & (s, h2) � A2

12 / 25

Assertion Language (extension)

Syntax (continued)

A ::= . . .
| empep | E

peer7→(C{a},E ′) endpoints’ predicates

Intuitively E peer7→(C{a},E ′) means :
I E is an allocated endpoint
I its peer is E ′

I it is ruled by contract C
I it currently is in contract’s state a

13 / 25

Soundness

Theorem 1 (Soundness)

If a Hoare triple {A} p {B} is provable, then if the program p
starts in a state satisfying A and terminates,
1. p does not fault on memory accesses
2. p does not leak memory
3. the final state satisfies B

14 / 25

Proof System

Standard Hoare Logic

{A} p {A′} {A′} p′ {B}
{A} p; p′ {B} . . .

Local Reasoning Rules

{A} p {B}
{A ∗ F} p {B ∗ F}

{A} p {B} {A′} p′ {B ′}
{A ∗ A′} p||p′ {B ∗ B ′}

Small Axioms
{A} x = E {A[x←x ′] ∧ x = E [x←x ′]}

{emp} x = new() {∃v . x 7→ v} . . .

15 / 25

Proof of Programs

{ x 7→ d : 10 }
y = new ();

{ x 7→ d : 10 ∗ y 7→ − }
y->d = 42;

{ x 7→ d : 10 ∗ y 7→ d : 42 }
dispose(x);

{ y 7→ d : 42 }
x = y;

{ x 7→ d : 42 ∧ x = y }

16 / 25

Proof System (extended)

Standard Hoare Logic

Unchanged.

Local Reasoning Rules

Unchanged.

Small Axioms
Small axioms added for new commands.

17 / 25

Annotating Messages

I We have to know the contents of messages
I Each message m appearing in a contract is described by a

formula Im of our logic.

I Im may refer to two special variables:
• val will denote the location of the message in memory
• src will denote the location of the sending endpoint

18 / 25

Small Axioms for Communications

Open and Close rules:

i = init(C)

{emp} (e, f) = open(C) {e peer7→(C{i}, f) ∗ f peer7→(C̄{i}, e)}

f ∈ final(C)

{E peer7→(C{f },E ′) ∗ E ′ peer7→(C̄{f },E)} close (E,E’) {emp}

19 / 25

Small Axioms for Communications

Receive rule:

a ?m−→ b ∈ C
{E peer7→(C{a}, f)} x = receive(m, E) {E peer7→(C{b}, f) ∗ Im(x , f)}

19 / 25

Small Axioms for Communications

Send rules:

a !m−→ b ∈ C
{E peer7→(C{a},−) ∗ Im(E ′,E)} send(E.m,E’) {E peer7→(C{b},−)}

a !m−→ b ∈ C
{E peer7→(C{a},−) ∗ (E peer7→(C{b},−) −−∗ Im(E ′,E))}

send(E.m,E’)
{emp}

19 / 25

Soundness

Theorem 2 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,
1. contracts are respected
2. p does not fault on memory accesses
3. p does not leak memory

thanks to contracts!

4. the final state satisfies B
5. there is no race
6. no communication error occur

thanks to contracts!

7. there is no deadlock

not yet. . .

20 / 25

Soundness

Theorem 2 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,
1. contracts are respected
2. p does not fault on memory accesses
3. p does not leak memory thanks to contracts!
4. the final state satisfies B
5. there is no race
6. no communication error occur thanks to contracts!
7. there is no deadlock

not yet. . .

20 / 25

Soundness

Theorem 2 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,
1. contracts are respected
2. p does not fault on memory accesses
3. p does not leak memory thanks to contracts!
4. the final state satisfies B
5. there is no race
6. no communication error occur thanks to contracts!
7. there is no deadlock not yet. . .

20 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);

21 / 25

Proof of the Example

// list(x) * e|->(C{i},f)
local t;
while (x != null) {

t = x->tl;

send(cell , e, x);

x = t;
receive(ack , e); }

send(close_me , e, e);

21 / 25

Proof of the Example

// list(x) * e|->(C{i},f)
local t;
while (x != null) {

// x|-> Y * ls(Y) * e|->(C{i},f)
t = x->tl;
// x|-> Y * ls(Y) * e|->(C{i},f) /| t=Y
send(cell , e, x);
// list(t) * e|->(C{ack},f)
x = t;
receive(ack , e); }

// e|->(C{transfer},f)
send(close_me , e, e);
// emp

21 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);

21 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);
// emp

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);

21 / 25

Proof of the Example

// f|->(C{i},e)
local x, e=0;

while (e == 0) {

{ x = receive(cell , f);

dispose(x);

send(ack , f);
} + {
e = receive(close_me , f);

}
}

close(e, f);

21 / 25

Proof of the Example

// f|->(C{i},e)
local x, e=0;
// f|->(C{i},e) /| e=0
while (e == 0) {

// f|->(C{i},e) /| e=0
{ x = receive(cell , f);

// f|->(C{ack},e) * x |-> -
dispose(x);
// f|->(C{ack},e)
send(ack , f);

} + {
e = receive(close_me , f);
// f|->(C{end},e) * e|->(C{end},f)
}

}
// f|->(C{end},e) * e|->(C{end},f)
close(e, f);
// emp

21 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);
// emp

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);

21 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);
// emp

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);
// emp

21 / 25

Proof of the Example

//list(x)
local e,f;
(e,f) = open(C);

//list(x) * e|->(C{i},f) * f|->(C{i},e)
//(list(x)*e|->(C{i},f)) * (f|->(C{i},e))

local t;
while (x != null) {

t = x->tl;
send(cell , e, x);
x = t;
receive(ack , e); }

send(close_me , e, e);
// emp

||

local y, e=0;
while (e == 0) {

{ y = receive(cell , f);
free(y);
send(ack , f);

} + {
e = receive(close_me , f);

}}
close(e, f);
// emp

// emp

21 / 25

Conclusion

In this Talk [APLAS’09]

I Formalization of heap-manipulating, message passing programs
with contracts

I Contracts help us to ensure the absence of memory leaks
I Proof system
I Tool to prove specifications: Heap-Hop

I Not in this talk: semantics (based on abstract separation logic)
I Not in this talk: details!

In a Future Talk

I Contracts help us to ensure the absence of deadlocks
I Tackle real case studies: Singularity, MPI, distributed GC, . . .

22 / 25

Conclusion

In this Talk [APLAS’09]

I Formalization of heap-manipulating, message passing programs
with contracts

I Contracts help us to ensure the absence of memory leaks
I Proof system
I Tool to prove specifications: Heap-Hop
I Not in this talk: semantics (based on abstract separation logic)

I Not in this talk: details!

In a Future Talk

I Contracts help us to ensure the absence of deadlocks
I Tackle real case studies: Singularity, MPI, distributed GC, . . .

22 / 25

Conclusion

In this Talk [APLAS’09]

I Formalization of heap-manipulating, message passing programs
with contracts

I Contracts help us to ensure the absence of memory leaks
I Proof system
I Tool to prove specifications: Heap-Hop
I Not in this talk: semantics (based on abstract separation logic)
I Not in this talk: details!

In a Future Talk

I Contracts help us to ensure the absence of deadlocks
I Tackle real case studies: Singularity, MPI, distributed GC, . . .

22 / 25

Conclusion

In this Talk [APLAS’09]

I Formalization of heap-manipulating, message passing programs
with contracts

I Contracts help us to ensure the absence of memory leaks
I Proof system
I Tool to prove specifications: Heap-Hop
I Not in this talk: semantics (based on abstract separation logic)
I Not in this talk: details!

In a Future Talk

I Contracts help us to ensure the absence of deadlocks
I Tackle real case studies: Singularity, MPI, distributed GC, . . .

22 / 25

Properties of Contracts

Under some simple restrictions, contracts have interesting
properties.

Definition 3 (Synchronizing state)

Every cycle in the contract must contain at least one send and one
receive.

a b

!m1

!m2

a b

!m1

?m2

Definition 4 (Determinism)

Definition 5 (Uniform choice)

24 / 25

Properties of Contracts

Under some simple restrictions, contracts have interesting
properties.

Definition 3 (Synchronizing state)

Definition 4 (Determinism)

Two distinct edges in a contract must be labeled by different
messages.

a
b

c

!m

!m

a
b

c

!m

!m′
a

b

c

!m

?m

Definition 5 (Uniform choice)

24 / 25

Properties of Contracts

Under some simple restrictions, contracts have interesting
properties.

Definition 3 (Synchronizing state)

Definition 4 (Determinism)

Definition 5 (Uniform choice)

All outgoing edges from a same state in a contract must be either
all sends or all receives.

a
b

c

!m1

?m2

a
b

c

!m1

!m2

24 / 25

Properties of Contracts

Under some simple restrictions, contracts have interesting
properties.

Definition 3 (Synchronizing state)

Definition 4 (Determinism)

Definition 5 (Uniform choice)

Lemma 6 (Half-Duplex)

4 & 5⇒ communications are
half-duplex.

Lemma 7 (Leak-free)

final states are synchronizing and
communications are half-duplex
⇒ contract is leak-free

24 / 25

	Copyless Message Passing
	Language Highlights
	Contracts

	Local Reasoning for Copyless Message Passing
	Separation Logic
	Separation Logic Extended
	Proofs in Separation Logic…
	…Extended
	Proof Sketch

	Conclusion

